Perspectives on Septic Tank Loading to the St. Lucie Estuary

April 18, 2017 Gary Goforth, P.E., Ph.D. Gary Goforth, LLC

Discussion Points

- The St. Lucie Estuary is impacted by pollution from several sources, including Lake Okeechobee discharges, agricultural stormwater, urban runoff, and others, including poorly operating septic tanks
 - Toxic algae
 - Sediment
 - nutrients
- Activities are underway by agencies and landowners to reduce nutrient pollution loading to the estuary
- No "one-size-fits-all" approach to septic tanks

Historical Watershed

Watershed has More Than Doubled with Construction of Major Agricultural Canals

From SFWMD 2016 4

Land Use in Watershed

Agriculture is the dominant land use Communities comprise less than 20%

Basin	Area (acres)	Ag Area (acres)	Ag Area (%)	Natural Area (acres)	Natural Area (%)	Urban & Other (acres)	Urban & Other (%)
C-23 Canal Basin	112,160	84,744	76%	23,706	21%	3,710	3%
C-24 Canal Basin	83,373	67,516	81%	15,701	19%	156	0%
C-44 Canal Basin	132,717	78,351	59%	37,163	28%	17,203	13%
Ten Mile Creek	39,726	32,491	82%	0	0%	7,235	18%
Tidal Basins, composed of the following:	157,840	26,533	17%	59,945	38%	71,362	45%
North Fork, excl. Ten Mile Cr.	92,138	3,968	4%	33,129	36%	55,041	60%
South Fork	50,121	20,120	40%	18,987	38%	11,014	22%
Basin 4-5-6	15,581	2,445	16%	7,830	50%	5,306	34%
Total SLRE Watershed	525,816	289,635	55%	136,516	26%	99,665	19%

Table 1. Characteristics of Basins Contributing to the SLRE (from FDEP 2014, SFWMD 2016)

Contribution of Inflows by Land Use

Flow – 80% from "local watershed" – but of that, majority is agricultural land use, only about 14% of local watershed flow is from communities

Phosphorus - "local" ag contribution is more than 10 times contribution from communities

Nitrogen – estimated loads from agriculture is more than 6 times the loading from communities

Sediment – Lake discharge is overwhelmingly the primary contributor

Estimated contribution by land use based on FDEP method (2013)

Load Reduction Measures

- Lake discharges additional storage and treatment south, east (C-44 RSTA), north and west
- Ag runoff best management practices
- Urban runoff city and county projects
 - Stormwater treatment areas, fertilizer ordinances, etc.
 - Convert septic tanks to centralized sewers
 - City of Stuart very effective voluntary program
 - Martin County "all septic tanks are evil" program currently mandatory
 - Approximately ~\$16 million to convert Sewall's Point septic tanks to central sewers (utility costs, homeowner costs and State grant)
 - Other projects described in Basin Management Action Plan (FDEP)
 - Martin County has achieved its nitrogen load reduction goals

Are All Septic Tanks Evil?

- Absolutely not!
- Septic tanks and drainfields have been successfully used for many years.
- They have proven to be a reliable and effective alternative to central sewer collection systems when properly designed, installed and <u>maintained</u>.
 - Periodic inspection and pump-out is responsibility of owner
- Soil types, depth to groundwater, flooding affect performance.
- However, poorly operating septic tanks/drainfields can impact the water quality of the Estuary and IRL and need to be addressed.
- Site-specific studies can identify problem areas

In some areas, other water quality programs may be more cost-effective than requiring homeowners to convert a well-performing septic tank to centralized sewer

Uncertainty Surrounding Septic Loading Estimates

Septic tanks do not contribute toxic blue-green algae or sediment – two of the most pressing pollution problems facing the Estuary and Lagoon During 2016, septic tank loading estimated at less than 5%

	Source Basin	1980-2016 Average Annual Total Nitrogen		
6.5				
	C-23 Canal Basin	652,009		
	C-24 Canal Basin	631,237		
FDEP	C-44 Canal Basin	550,528		
e areas	Ten Mile Creek Basin	291,936		
	Lake Okeechobee	1,075,469		
	669,537			
Total Nitrogen Load to Estuary		3,870,717		
No. of Martin a	35,439			
Estimate of TN load from septic tanks to the estuary (Ye and Sun 2013) 230,936				
Estimate of % of total nitrogen load to St. Lucie Estuary from septic tanks 6%				
SFWMD 2016. Draft Chapter 8C: St. Lucie and Caloosahatchee River Watershed Research and Water				
Quality Monitoring Results and Activities, South Florida Environmental Report, September 2016				
Ye, Ming and Huaiwei Sun 2013. Estimation of Nitrogen Load from Removed Septic Systems to Surface				

Water Bodies in the City of Port St. Lucie, the City of Stuart, and Martin County. Prepared for the Florida Department of Environmental Protection. September 2013.

Total nitrogen loads estimated from data obtained from the SFWMD database, DBHYDRO. Data and calculations are provisional and subject to revision.

Sewall's Point is Unique

- Very diverse geographic and environmental features
 - Long and narrow
 - Borders the Estuary to west and IRL to east
 - Ground elevations range from 0 57 ft above sea level!
- One of the 1st communities on east coast to enact strong fertilizer ordinance

Unlikely that one septic tank management strategy fits all

Areas of potential concern –

 Septic tank drainfield characteristics compared to FEMA flood zone maps

Unlikely that one septic tank management strategy fits all

- Other municipalities have had success:
 - Require periodic inspection and pump-out
 - Provide centralized sewer skeleton
 - voluntary hook-up (e.g., City of Stuart)
 - Hybrid mandatory hook-up if tank or drainfield fails
 - Perform water quality sampling to determine if problem areas exist – e.g., Martin County/FDEP
 - Comprehensive water quality management program

High scientific uncertainty warrants additional investigation(s)

Relative Cost of Nitrogen Removal Over 20 Years

Estimates are provisional and subject to revision

Summary

- The Town of Sewall's Point may need to structure a diverse septic tank management program to match the local conditions.
- Additional scientific data are likely needed to support multi-million dollar investment.

More information available at www.garygoforth.net