SOUTH FLORIDA WATER MANAGEMENT DISTRICT

PERFORMANCE MEASURE METHODOLOGIES FOR COLLECTIVE SOURCE CONTROLS IN THE LAKE OKEECHOBEE AND CALOOSAHATCHEE WATERSHEDS

DRAFT – TECHNICAL SUPPORT DOCUMENT: LAKE OKEECHOBEE WATERSHED PERFORMANCE MEASURE METHODOLOGIES

The GGI TeamIn Association WithSouth FloridaGary Goforth, Inc.Water ManagementL. Hornung Consulting, Inc.DistrictSoil & Water Engineering Technology, Inc.District

February 2013

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY	
1.1 Background and Purpose	. 1
1.2 Performance Measures Methodologies Development	5
1.3 Annual Performance Determination	7
2. INTRODUCTION AND OBJECTIVES	24
2.1 Organization of the Draft Technical Support Document	25
2.2 Authorization and Scope	28
2.3 Background	30
2.3.1 History of Source Controls in the Lake Okeechobee Watershed	30
2.4 Regulatory Framework	
2.4.1 Total Maximum Daily Loads	
2.4.2 Lake Okeechobee Protection Plan	54
2.5 Definitions	59
2.6 Performance Measure Methodology	62
2.6.1 Consideration of Pass-through Flow and Load	62
2.6.2 Source Control Effectiveness	63
2.6.3 Significant Digits	67
2.6.4 Selecting the Regression Equation	68
2.6.5 Exceedance Frequency Analysis	74
2.6.6 Strength and Defensibility	75
2.6.7 Regional Projects	
2.6.8 Annual Performance Determination	77
3. PERFORMANCE MEASURE METHODOLOGIES FOR THE LAKE	
OKEECHOBEE WATERSHED	
3.1 Taylor Creek-Nubbin Slough Sub-watershed	83
3.1.1 S-133 Summary Basin	86
3.1.1.1 Background	86
3.1.1.2 Performance Measure Methodology	89
3.1.2 S-135 Summary Basin	95
3.1.2.1 Background	
3.1.2.2 Performance Measure Methodology	95
3.1.3 S-154 Summary Basin	97
3.1.3.1 Background	
3.1.3.2 Performance Measure Methodology 1	00
3.1.4 S-154C Summary Basin 1	
3.1.4.1 Background 1	
3.1.4.2 Performance Measure Methodology 1	06
3.1.5 S-191 Summary Basin 1	08
3.1.5.1 Background 1	08

3.2 Lower Kissimmee Sub-watershed. 117 3.2.1.1 Background 117 3.2.1.2 Performance Measure Methodology. 123 3.3 East Lake Okeechobee Sub-watershed 129 3.1.1 Background 131 3.1.2 Performance Measure Methodology 135 3.3.2 L-8 Summary Basin 142 3.3.2.1 Background 142 3.3.2.2 Performance Measure Methodology 149 3.4.1 Background 155 3.4.1 Background 155 3.4.2 Performance Measure Methodology 163 3.5 Fisheating Creek-Nicodemus Slough Sub-watershed 169 3.5.1 Fisheating Creek-Nicodemus Slough Sub-watershed 169 3.5.1 Performance Measure Methodology 172 3.5.1.2 Performance Measure Methodology 175 3.5.2 Nicodemus Slough Summary Basin 180 3.5.2.1 Background 180 3.5.2.2 Performance Measure Methodology 181 3.6 Lake Istokpoga Sub-watershed 182 <t< th=""><th>3.1.5.2 Performance Measure Methodology111</th></t<>	3.1.5.2 Performance Measure Methodology111
32.1.2 Performance Measure Methodology 123 3.3 East Lake Okeechobee Sub-watershed 129 3.3.1 C-44 Hydrologic Unit 129 3.3.1.1 Background 131 3.3.2 L-8 Summary Basin 142 3.3.2 L-8 Summary Basin 142 3.3.2.1 Background 141 3.3.2.2 Performance Measure Methodology 142 3.3.2.3.2 Performance Measure Methodology 142 3.3.2.1 Background 142 3.3.2.2 Performance Measure Methodology 143 3.4 Indian Prairie Sub-watershed 155 3.4.1 Background 155 3.4.2 Performance Measure Methodology 163 3.5.1 Fisheating Creek Summary Basin 172 3.5.1.2 Performance Measure Methodology 175 3.5.2 Nicodemus Slough Summary Basin 180 3.5.2.1 Background 180 3.5.2.2 Performance Measure Methodology 181 3.6 Lake Istokpoga Sub-watershed 180 3.5.2.1 Backgr	3.2 Lower Kissimmee Sub-watershed117
3.3 East Lake Okeechobee Sub-watershed 129 3.3.1 C-44 Hydrologic Unit 129 3.3.1.1 Background 131 3.3.1.2 Performance Measure Methodology 135 3.3.2 L-8 Summary Basin 142 3.3.2.1 Background 142 3.3.2.2 Performance Measure Methodology 149 3.4 Indian Prairie Sub-watershed 155 3.4.2 Performance Measure Methodology 163 3.5 Fisheating Creek Nicodemus Slough Sub-watershed 169 3.5.1 Fisheating Creek Summary Basin 172 3.5.1.2 Performance Measure Methodology 173 3.5.1.3 Performance Measure Methodology 175 3.5.2 Nicodemus Slough Summary Basin 180 3.5.2.1 Background 180 3.5.2.2 Performance Measure Methodology 181 3.6 Lake Istokpoga Sub-watershed 180 3.5.2.1 Background 182 3.6.1 Background 182 3.6.1 Background 182 3.6.1 Back	3.2.1.1 Background
3.3.1 C-44 Hydrologic Unit 129 3.3.1.1 Background 131 3.3.1.2 Performance Measure Methodology 135 3.3.2 L-8 Summary Basin 142 3.3.2.1 Background 142 3.3.2 L-8 Summary Basin 142 3.3.2 L-8 Summary Basin 142 3.3.2.2 Performance Measure Methodology 149 3.4 Indian Prairie Sub-watershed 155 3.4.1 Background 155 3.4.1 Background 163 3.5 Fisheating Creek-Nicodemus Slough Sub-watershed 169 3.5.1 Fisheating Creek Summary Basin 172 3.5.1.2 Performance Measure Methodology 175 3.5.2 Nicodemus Slough Summary Basin 180 3.5.2.1 Background 180 3.5.2.2 Performance Measure Methodology 181 3.6 Lake Istokpoga Sub-watershed 182 3.6.1 Background 182 3.6.1 Background 182 3.6.1 Background 202	3.2.1.2 Performance Measure Methodology 123
3.3.1.1Background1313.3.1.2Performance Measure Methodology1353.3.2L-8 Summary Basin1423.3.2.1Background1423.3.2.2Performance Measure Methodology1493.3.2.1Background1553.4.2Performance Measure Methodology1633.5Fisheating Creek-Nicodemus Slough Sub-watershed1693.5.1Fisheating Creek-Nicodemus Slough Sub-watershed1693.5.1Fisheating Creek-Nicodemus Slough Sub-watershed1723.5.1.2Performance Measure Methodology1753.5.2Nicodemus Slough Sub-watershed1803.5.2.1Background1803.5.2.2Performance Measure Methodology1813.6Lake Istokpoga Sub-watershed1823.6.1.1Performance Measure Methodology1863.7West Lake Okeechobee Sub-watershed1993.7.1.2Performance Measure Methodology2043.7.2East Caloosahatchee Hydrologic Unit2133.7.2.1Background2143.7.2.2Performance Measure Methodology2183.8.1Background2233.8.1.1Performance Measure Methodology2233.8.1.1Performance Measure Methodology2233.8.1.1Performance Measure Methodology2233.8.1.1Performance Measure Methodology2233.8.1.1Performance Measure Methodology2243.9.1.2South Lake Okeechobee Sub-watershed223 <td>3.3 East Lake Okeechobee Sub-watershed 129</td>	3.3 East Lake Okeechobee Sub-watershed 129
3.3.1.2Performance Measure Methodology1353.3.2L-8 Summary Basin1423.3.2.1Background1423.3.2.2Performance Measure Methodology1493.4Indian Prairie Sub-watershed1553.4.1Background1553.4.2Performance Measure Methodology1633.5Fisheating Creek-Nicodemus Slough Sub-watershed1693.5.1Fisheating Creek Summary Basin1723.5.1.1Background1723.5.1.2Performance Measure Methodology1753.5.2Nicodemus Slough Submary Basin1803.5.2.1Background1803.5.2.2Performance Measure Methodology1813.6Lake Istokpoga Sub-watershed1823.6.1Background1823.6.1.1Performance Measure Methodology1863.7West Lake Okeechobee Sub-watershed1993.7.1S-4/Industrial Canal Hydrologic Unit2043.7.2East Caloosahatchee Hydrologic Unit2133.7.2.1Background2233.8.1Background2233.8.1Background2233.8.1Performance Measure Methodology2283.9South Lake Okeechobee Sub-watershed2233.9.1Summary of the Historic Data and Existing Performance Measure2233.9.1.1EAA Basin2453.9.1.2EAA Basin Historical Data246	3.3.1 C-44 Hydrologic Unit 129
3.3.2L-8 Summary Basin1423.3.2.1Background1423.3.2.2Performance Measure Methodology1493.4Indian Prairie Sub-watershed1553.4.1.1Background1553.4.2Performance Measure Methodology1633.5Fisheating Creek-Nicodemus Slough Sub-watershed1693.5.1Fisheating Creek Summary Basin1723.5.1.2Performance Measure Methodology1753.5.2Nicodemus Slough Sub-watershed1803.5.2.1Background1723.5.1.2Performance Measure Methodology1753.5.2Nicodemus Slough Summary Basin1803.5.2.1Background1803.5.2.2Performance Measure Methodology1813.6Lake Istokpoga Sub-watershed1823.6.1Background1823.6.1Background1823.6.1.1Performance Measure Methodology1863.7West Lake Okeechobee Sub-watershed1993.7.1S-4/Industrial Canal Hydrologic Unit2023.7.1.1Background2143.7.2Performance Measure Methodology2183.8Upper Kissimmee Sub-watershed2233.8.1.1Performance Measure Methodology2233.8.1.1Performance Measure Methodology2233.8.1.1Performance Measure Methodology2233.8.1.1Performance Measure Methodology2233.8.1.1Performance Measure Methodology223<	3.3.1.1 Background
3.3.2.1Background1423.3.2.2Performance Measure Methodology1493.4Indian Prairie Sub-watershed1553.4.1.1Background1553.4.2Performance Measure Methodology1633.5Fisheating Creek-Nicodemus Slough Sub-watershed1693.5.1Fisheating Creek Summary Basin1723.5.1.2Performance Measure Methodology1753.5.2Nicodemus Slough Summary Basin1803.5.2.1Background1803.5.2.2Performance Measure Methodology1813.6.1Background1823.6.1Background1823.6.1Performance Measure Methodology1813.6.1Performance Measure Methodology1813.6.1Performance Measure Methodology1823.6.1Performance Measure Methodology1823.7.1Background1823.7.2Lake Okeechobee Sub-watershed1993.7.1S-4/Industrial Canal Hydrologic Unit2023.7.1.1Background2143.7.2.2Performance Measure Methodology2133.7.2.1Background2143.7.2.1Background2143.7.2.1Background2133.8.1Background2233.8.1Background2233.8.1.1Performance Measure Methodology2283.9South Lake Okeechobee Sub-watershed2233.8.1Background2243.9.1Sum	3.3.1.2 Performance Measure Methodology135
3.3.2.2Performance Measure Methodology1493.4Indian Prairie Sub-watershed1553.4.1.1Background1553.4.2Performance Measure Methodology1633.5Fisheating Creek-Nicodemus Slough Sub-watershed1693.5.1Fisheating Creek Summary Basin1723.5.1.2Performance Measure Methodology1753.5.2Nicodemus Slough Summary Basin1803.5.2.1Background1803.5.2.2Performance Measure Methodology1813.6Lake Istokpoga Sub-watershed1823.6.1.1Background1823.6.1.1Performance Measure Methodology1863.7West Lake Okeechobee Sub-watershed1993.7.1S-4/Industrial Canal Hydrologic Unit2023.7.1.1Background2043.7.2.2Performance Measure Methodology2183.8Upper Kissimmee Sub-watershed2233.8.1.1Performance Measure Methodology2183.9South Lake Okeechobee Sub-watershed2233.8.1.1Performance Measure Methodology2183.9South Lake Okeechobee Sub-watershed2233.8.1.1Performance Measure Methodology2183.9South Lake Okeechobee Sub-watershed2233.9.1.2EAA Basin Background2453.9.1.1EAA Basin Background2453.9.1.2EAA Basin Historical Data246	3.3.2 L-8 Summary Basin
3.4Indian Prairie Sub-watershed1553.4.1.1Background1553.4.2Performance Measure Methodology1633.5Fisheating Creek-Nicodemus Slough Sub-watershed1693.5.1Fisheating Creek Summary Basin1723.5.1.1Background1723.5.2.1Performance Measure Methodology1753.5.2.1Background1803.5.2.1Background1803.5.2.2Performance Measure Methodology1813.6Lake Istokpoga Sub-watershed1823.6.1Background1823.6.1Background1823.6.1.1Performance Measure Methodology1863.7West Lake Okeechobee Sub-watershed1993.7.1S-4/Industrial Canal Hydrologic Unit2023.7.2East Caloosahatchee Hydrologic Unit2043.7.2.1Background2143.7.2.2Performance Measure Methodology2183.8.1Background2233.8.1Background2233.8.1.1Performance Measure Methodology2233.8.1Background2233.8.1Background2233.8.1Background2433.9.1Summary of the Historic Data and Existing Performance Measure2453.9.1.2EAA Basin2453.9.1.2EAA Basin Historical Data245	3.3.2.1 Background
3.4.1.1Background1553.4.2Performance Measure Methodology1633.5Fisheating Creek-Nicodemus Slough Sub-watershed1693.5.1Fisheating Creek Summary Basin1723.5.1.1Background1723.5.1.2Performance Measure Methodology1753.5.2Nicodemus Slough Summary Basin1803.5.2.1Background1803.5.2.2Performance Measure Methodology1813.6Lake Istokpoga Sub-watershed1823.6.1Background1823.6.1.1Performance Measure Methodology1863.7West Lake Okeechobee Sub-watershed1993.7.1S-4/Industrial Canal Hydrologic Unit2023.7.1.1Background2043.7.2.1Background2143.7.2.2Performance Measure Methodology2183.8Upper Kissimmee Sub-watershed2233.8.1Background2233.8.1.1Performance Measure Methodology2283.9South Lake Okeechobee Sub-watershed2233.8.1.1Performance Measure Methodology2233.8.1.1Performance Measure Methodology2233.8.1Background2233.8.1.1Performance Measure Methodology2233.9.1.1EAA Basin2453.9.1.1EAA Basin2453.9.1.1EAA Basin2453.9.1.2EAA Basin Historical Data246	3.3.2.2 Performance Measure Methodology 149
3.4.2Performance Measure Methodology	3.4 Indian Prairie Sub-watershed 155
3.5Fisheating Creek-Nicodemus Slough Sub-watershed1693.5.1Fisheating Creek Summary Basin1723.5.1.1Background1723.5.1.2Performance Measure Methodology1753.5.2Nicodemus Slough Summary Basin1803.5.2.1Background1803.5.2.2Performance Measure Methodology1813.6Lake Istokpoga Sub-watershed1823.6.1Background1823.6.1.1Performance Measure Methodology1863.7West Lake Okeechobee Sub-watershed1993.7.1S-4/Industrial Canal Hydrologic Unit2023.7.1.1Background2043.7.2.2Performance Measure Methodology2073.7.2East Caloosahatchee Hydrologic Unit2133.7.2.1Background2143.7.2.2Performance Measure Methodology2183.8Upper Kissimmee Sub-watershed2233.8.1Background2233.8.1.1Performance Measure Methodology2283.9South Lake Okeechobee Sub-watershed2233.8.1Background2243.9South Lake Okeechobee Sub-watershed2433.9.1Summary of the Historic Data and Existing Performance Measure2453.9.1.1EAA Basin2453.9.1.2EAA Basin Historical Data245	3.4.1.1 Background
3.5Fisheating Creek-Nicodemus Slough Sub-watershed1693.5.1Fisheating Creek Summary Basin1723.5.1.1Background1723.5.1.2Performance Measure Methodology1753.5.2Nicodemus Slough Summary Basin1803.5.2.1Background1803.5.2.2Performance Measure Methodology1813.6Lake Istokpoga Sub-watershed1823.6.1Background1823.6.1.1Performance Measure Methodology1863.7West Lake Okeechobee Sub-watershed1993.7.1S-4/Industrial Canal Hydrologic Unit2023.7.1.1Background2043.7.2.2Performance Measure Methodology2073.7.2East Caloosahatchee Hydrologic Unit2133.7.2.1Background2143.7.2.2Performance Measure Methodology2183.8Upper Kissimmee Sub-watershed2233.8.1Background2233.8.1.1Performance Measure Methodology2283.9South Lake Okeechobee Sub-watershed2233.8.1Background2243.9South Lake Okeechobee Sub-watershed2433.9.1Summary of the Historic Data and Existing Performance Measure2453.9.1.1EAA Basin2453.9.1.2EAA Basin Historical Data245	3.4.2 Performance Measure Methodology
3.5.1.1Background1723.5.1.2Performance Measure Methodology1753.5.2Nicodemus Slough Summary Basin1803.5.2.1Background1803.5.2.2Performance Measure Methodology1813.6Lake Istokpoga Sub-watershed1823.6.1Background1823.6.1Performance Measure Methodology1863.7West Lake Okeechobee Sub-watershed1993.7.1S-4/Industrial Canal Hydrologic Unit2023.7.1.1Background2043.7.2Ferformance Measure Methodology2073.7.2East Caloosahatchee Hydrologic Unit2133.7.2.1Background2143.7.2.2Performance Measure Methodology2183.8Upper Kissimmee Sub-watershed2233.8.1Background2233.8.1.1Performance Measure Methodology2233.8.1.2South Lake Okeechobee Sub-watershed2233.9.1Summary of the Historic Data and Existing Performance Measure2453.9.1.1EAA Basin Background2453.9.1.2EAA Basin Historical Data246	
3.5.1.2Performance Measure Methodology1753.5.2Nicodemus Slough Summary Basin1803.5.2.1Background1803.5.2.2Performance Measure Methodology1813.6Lake Istokpoga Sub-watershed1823.6.1Background1823.6.1.1Performance Measure Methodology1863.7West Lake Okeechobee Sub-watershed1993.7.1S-4/Industrial Canal Hydrologic Unit2023.7.1.1Background2043.7.2Performance Measure Methodology2073.7.2East Caloosahatchee Hydrologic Unit2133.7.2.1Background2143.7.2.2Performance Measure Methodology2183.8Upper Kissimmee Sub-watershed2233.8.1Background2233.8.1Background2233.8.1.1Performance Measure Methodology2283.9South Lake Okeechobee Sub-watershed2233.9.1Summary of the Historic Data and Existing Performance Measure2433.9.1.1EAA Basin Background2453.9.1.2EAA Basin Historical Data246	3.5.1 Fisheating Creek Summary Basin172
3.5.2Nicodemus Slough Summary Basin1803.5.2.1Background1803.5.2.2Performance Measure Methodology1813.6Lake Istokpoga Sub-watershed1823.6.1Background1823.6.1.1Performance Measure Methodology1863.7West Lake Okeechobee Sub-watershed1993.7.1S-4/Industrial Canal Hydrologic Unit2023.7.1.1Background2043.7.2Performance Measure Methodology2073.7.2East Caloosahatchee Hydrologic Unit2133.7.2.1Background2143.7.2.2Performance Measure Methodology2183.8Upper Kissimmee Sub-watershed2233.8.1Background2233.8.1Background2233.8.1South Lake Okeechobee Sub-watershed2433.9.1Summary of the Historic Data and Existing Performance Measure2453.9.1.1EAA Basin Background2453.9.1.2EAA Basin Historical Data246	3.5.1.1 Background
3.5.2Nicodemus Slough Summary Basin1803.5.2.1Background1803.5.2.2Performance Measure Methodology1813.6Lake Istokpoga Sub-watershed1823.6.1Background1823.6.1.1Performance Measure Methodology1863.7West Lake Okeechobee Sub-watershed1993.7.1S-4/Industrial Canal Hydrologic Unit2023.7.1.1Background2043.7.2Performance Measure Methodology2073.7.2East Caloosahatchee Hydrologic Unit2133.7.2.1Background2143.7.2.2Performance Measure Methodology2183.8Upper Kissimmee Sub-watershed2233.8.1Background2233.8.1Background2233.8.1South Lake Okeechobee Sub-watershed2433.9.1Summary of the Historic Data and Existing Performance Measure2453.9.1.1EAA Basin Background2453.9.1.2EAA Basin Historical Data246	3.5.1.2 Performance Measure Methodology 175
3.5.2.1Background1803.5.2.2Performance Measure Methodology1813.6Lake Istokpoga Sub-watershed1823.6.1Background1823.6.1.1Performance Measure Methodology1863.7West Lake Okeechobee Sub-watershed1993.7.1S-4/Industrial Canal Hydrologic Unit.2023.7.1.1Background2043.7.2East Caloosahatchee Hydrologic Unit2133.7.2.1Background2143.7.2.2Performance Measure Methodology2183.8Upper Kissimmee Sub-watershed2233.8.1.1Performance Measure Methodology2233.8.1.1Performance Measure Methodology2233.8.1.1South Lake Okeechobee Sub-watershed2233.9.1Summary of the Historic Data and Existing Performance Measure2453.9.1.1EAA Basin Background2453.9.1.2EAA Basin Historical Data246	
3.6Lake Istokpoga Sub-watershed1823.6.1Background1823.6.1.1Performance Measure Methodology1863.7West Lake Okeechobee Sub-watershed1993.7.1S-4/Industrial Canal Hydrologic Unit.2023.7.1.1Background2043.7.2.2Performance Measure Methodology2073.7.2East Caloosahatchee Hydrologic Unit2133.7.2.1Background2143.7.2.2Performance Measure Methodology2183.8Upper Kissimmee Sub-watershed2233.8.1.1Performance Measure Methodology2283.9South Lake Okeechobee Sub-watershed2233.9.1Summary of the Historic Data and Existing Performance Measure2453.9.1.1EAA Basin Background2453.9.1.2EAA Basin Historical Data246	
3.6Lake Istokpoga Sub-watershed1823.6.1Background1823.6.1.1Performance Measure Methodology1863.7West Lake Okeechobee Sub-watershed1993.7.1S-4/Industrial Canal Hydrologic Unit.2023.7.1.1Background2043.7.2.2Performance Measure Methodology2073.7.2East Caloosahatchee Hydrologic Unit2133.7.2.1Background2143.7.2.2Performance Measure Methodology2183.8Upper Kissimmee Sub-watershed2233.8.1.1Performance Measure Methodology2283.9South Lake Okeechobee Sub-watershed2233.9.1Summary of the Historic Data and Existing Performance Measure2453.9.1.1EAA Basin Background2453.9.1.2EAA Basin Historical Data246	3.5.2.2 Performance Measure Methodology
3.6.1.1Performance Measure Methodology1863.7West Lake Okeechobee Sub-watershed1993.7.1S-4/Industrial Canal Hydrologic Unit2023.7.1.1Background2043.7.1.2Performance Measure Methodology2073.7.2East Caloosahatchee Hydrologic Unit2133.7.2.1Background2143.7.2.2Performance Measure Methodology2183.8Upper Kissimmee Sub-watershed2233.8.1Background2233.8.1.1Performance Measure Methodology2283.9South Lake Okeechobee Sub-watershed2433.9.1Summary of the Historic Data and Existing Performance Measure2453.9.1.1EAA Basin Background2453.9.1.2EAA Basin Historical Data246	
3.6.1.1Performance Measure Methodology1863.7West Lake Okeechobee Sub-watershed1993.7.1S-4/Industrial Canal Hydrologic Unit2023.7.1.1Background2043.7.1.2Performance Measure Methodology2073.7.2East Caloosahatchee Hydrologic Unit2133.7.2.1Background2143.7.2.2Performance Measure Methodology2183.8Upper Kissimmee Sub-watershed2233.8.1Background2233.8.1.1Performance Measure Methodology2283.9South Lake Okeechobee Sub-watershed2433.9.1Summary of the Historic Data and Existing Performance Measure2453.9.1.1EAA Basin Background2453.9.1.2EAA Basin Historical Data246	
3.7.1S-4/Industrial Canal Hydrologic Unit.2023.7.1.1Background2043.7.1.2Performance Measure Methodology2073.7.2East Caloosahatchee Hydrologic Unit2133.7.2.1Background2143.7.2.2Performance Measure Methodology2183.8Upper Kissimmee Sub-watershed2233.8.1Background2233.8.1.1Performance Measure Methodology2283.9South Lake Okeechobee Sub-watershed2433.9.1Summary of the Historic Data and Existing Performance Measure2453.9.1.1EAA Basin Background2453.9.1.2EAA Basin Historical Data246	
3.7.1S-4/Industrial Canal Hydrologic Unit.2023.7.1.1Background2043.7.1.2Performance Measure Methodology2073.7.2East Caloosahatchee Hydrologic Unit2133.7.2.1Background2143.7.2.2Performance Measure Methodology2183.8Upper Kissimmee Sub-watershed2233.8.1Background2233.8.1.1Performance Measure Methodology2283.9South Lake Okeechobee Sub-watershed2433.9.1Summary of the Historic Data and Existing Performance Measure2453.9.1.1EAA Basin Background2453.9.1.2EAA Basin Historical Data246	3.7 West Lake Okeechobee Sub-watershed
3.7.1.1Background2043.7.1.2Performance Measure Methodology2073.7.2East Caloosahatchee Hydrologic Unit2133.7.2.1Background2143.7.2.2Performance Measure Methodology2183.8Upper Kissimmee Sub-watershed2233.8.1Background2233.8.1.1Performance Measure Methodology2283.9South Lake Okeechobee Sub-watershed2433.9.1Summary of the Historic Data and Existing Performance Measure2453.9.1.1EAA Basin Background2453.9.1.2EAA Basin Historical Data246	
3.7.2East Caloosahatchee Hydrologic Unit2133.7.2.1Background2143.7.2.2Performance Measure Methodology2183.8Upper Kissimmee Sub-watershed2233.8.1Background2233.8.1.1Performance Measure Methodology2283.9South Lake Okeechobee Sub-watershed2433.9.1Summary of the Historic Data and Existing Performance Measure2453.9.1.1EAA Basin Background2453.9.1.2EAA Basin Historical Data246	3.7.1.1 Background
3.7.2East Caloosahatchee Hydrologic Unit2133.7.2.1Background2143.7.2.2Performance Measure Methodology2183.8Upper Kissimmee Sub-watershed2233.8.1Background2233.8.1.1Performance Measure Methodology2283.9South Lake Okeechobee Sub-watershed2433.9.1Summary of the Historic Data and Existing Performance Measure2453.9.1.1EAA Basin Background2453.9.1.2EAA Basin Historical Data246	3.7.1.2 Performance Measure Methodology
3.7.2.2Performance Measure Methodology2183.8Upper Kissimmee Sub-watershed2233.8.1Background2233.8.1.1Performance Measure Methodology2283.9South Lake Okeechobee Sub-watershed2433.9.1Summary of the Historic Data and Existing Performance Measure2453.9.1.1EAA Basin Background2453.9.1.2EAA Basin Historical Data246	
3.8Upper Kissimmee Sub-watershed.2233.8.1Background2233.8.1.1Performance Measure Methodology2283.9South Lake Okeechobee Sub-watershed2433.9.1Summary of the Historic Data and Existing Performance Measure2453.9.1.1EAA Basin Background2453.9.1.2EAA Basin Historical Data246	3.7.2.1 Background
3.8Upper Kissimmee Sub-watershed.2233.8.1Background2233.8.1.1Performance Measure Methodology2283.9South Lake Okeechobee Sub-watershed2433.9.1Summary of the Historic Data and Existing Performance Measure2453.9.1.1EAA Basin Background2453.9.1.2EAA Basin Historical Data246	3.7.2.2 Performance Measure Methodology
3.8.1.1Performance Measure Methodology2283.9South Lake Okeechobee Sub-watershed2433.9.1Summary of the Historic Data and Existing Performance MeasureMethodology for the EAA Basin2453.9.1.1EAA Basin Background2453.9.1.2EAA Basin Historical Data246	
3.8.1.1Performance Measure Methodology2283.9South Lake Okeechobee Sub-watershed2433.9.1Summary of the Historic Data and Existing Performance MeasureMethodology for the EAA Basin2453.9.1.1EAA Basin Background2453.9.1.2EAA Basin Historical Data246	3.8.1 Background
3.9.1Summary of the Historic Data and Existing Performance MeasureMethodology for the EAA Basin2453.9.1.1EAA Basin Background2453.9.1.2EAA Basin Historical Data246	
Methodology for the EAA Basin2453.9.1.1EAA Basin Background2453.9.1.2EAA Basin Historical Data246	3.9 South Lake Okeechobee Sub-watershed
Methodology for the EAA Basin2453.9.1.1EAA Basin Background2453.9.1.2EAA Basin Historical Data246	3.9.1 Summary of the Historic Data and Existing Performance Measure
3.9.1.1EAA Basin Background	
3.9.1.2 EAA Basin Historical Data	
3.9.1.3 EAA Basin Existing Performance Measure Summary	
8	3.9.1.3 EAA Basin Existing Performance Measure Summary

	3.9.2	Summary of the Chapter 298 Districts Historic Data and Proposed	
	Perforn	nance Measure Methodologies	250
	3.9.2.1	Background	251
	3.9.2.2	Historical Data Analysis	
	3.9.2.3	•	
4.	REFI	ERENCES	
A	PPEND	X A - SUPPLEMENTAL INFORMATION FOR THE DERIVATION	OF
Т	HE PER	FORMANCE MEASURE METHODOLOGIES FOR THE LAKE	
0	KEECH	OBEE WATERSHED	1
A	PPEND	IX B – DERIVATION OF EQUATIONS FOR THE PERFORMANCE	
N	IEASUR	E METHODOLOGIES OF THE LAKE OKEECHOBEE WATERSHI	E D 33
A	PPEND	IX C – SUMMARY OF DATA SOURCES USED FOR THE	
D	EVELO	PMENT OF THE PERFORMANCE MEASURE METHODOLOGIES	51
A	PPEND	IX D – ESTIMATION OF NUTRIENT LOAD REDUCTIONS RESUL	TING
F	ROM IN	IPLEMENTATION OF COLLECTIVE SOURCE CONTROL PROG	RAMS
Г	N BASIN	S WITH LOAD BASED PERFORMANCE MEASURES IN THE LAP	KE
0	KEECH	OBEE WATERSHED	1
A	PPEND	X E – ADJUSTMENTS TO ACCOUNT FOR REGIONAL PROJECT	S 1
		MENT 1 – Associated Excel Spreadsheets	
		1	

LIST OF TABLES

Table 1-1. Lake Okeechobee Watershed TP Load Performance Metrics. 3
Table 1-2. S-133 Summary Basin TP Load Performance Measure. 10
Table 1-3. S-154 Summary Basin TP Load Performance Measure. 11
Table 1-4. S-191 Summary Basin TP Load Performance Measure. 12
Table 1-5. Lower Kissimmee Sub-watershed TP Load Performance Measure
Table 1-6. C-44 Hydrologic Unit TP Load Performance Measure. 14
Table 1-7. L-8 Summary Basin TP Load Performance Measure
Table 1-8. Indian Prairie Sub-watershed TP Load Performance Measure. 16
Table 1-9. Fisheating Creek Summary Basin TP Load Performance Measure
Table 1-10. S-4/Industrial Canal Hydrologic Unit TP Load Performance Measure 18
Table 1-11. East Caloosahatchee Hydrologic Unit TP Load Performance Measure 19
Table 1-12. Arbuckle Creek Tributary TP Load Performance Indicator
Table 1-13. Josephine Creek Tributary TP Load Performance Indicator
Table 1-14. Boggy Creek Tributary TP Load Performance Indicator. 22
Table 1-15. Shingle Creek Tributary TP Load Performance Indicator
Table 2-1. Summary table of basins within the Lake Okeechobee Watershed
Table 2-2. Nutrient control programs within the Northern Everglades
Table 2-3. Summary of the source control implementation time frame for the Lake
Okeechobee Watershed 32
Table 2-4. FDEP Lake Okeechobee Operating Permit regional grouping (modified
from FDEP 2007 to show regional TP load targets)
Table 2-5. Cross-reference of LOOP and Lake Okeechobee Watershed structures49
Table 2-6. Comparison of LOOP and Lake Okeechobee Watershed receiving waters
and consideration of pass-through loads 50
Table 2-7. Estimates of TP Load reductions in the Lake Okeechobee Watershed (from
SFWMD et al 2011a)
Table 2-8. BMPs assumed to be implemented for estimates of nutrient load reductions
(based on Bottcher 2008)
Table 2-9. Recommended TP load reduction percentages. 67
Table 2-10. Regression equations evaluated to express annual TP load as a function of
hydrologic variability
Table 3-1. Summary of Lake Okeechobee Watershed performance metrics
Table 3-2. Summary of historical data for S-133.87
Table 3-3. Comparison of Base Period with period of record and WY2001-2010 data
for S-133
Table 3-4. Estimates of Annual Load Targets and Limits for the historical period of
record for the S-133 Summary Basin (Base Period: WY1977-1986)
Table 3-5. Exceedance frequencies for the proposed determination methodology for the
S-133 Summary Basin

Table 3-6. Summary of historical data for S-135 for the WY 1977-2010 period of record.
Table 3-7. Summary of historical data for S-154.98
Table 3-8. Comparison of Base Period with period of record data for S-154
Table 3-9. Estimates of Annual Load Targets and Limits for the historical period of
record for the S-154 Summary Basin (Base Period: WY1977-1984) 103
Table 3-10. Exceedance frequencies for the proposed determination methodology for
the S-154 Summary Basin 105
Table 3-11. Summary of historical flow and TP data for S-154C.107
Table 3-12. Summary of historical data for S-191.109
Table 3-13. Comparison of Base Period with period of record data for S-191.
Table 3-14. Estimates of annual Load Targets and Limits for the historical period of
record for the S-191 Summary Basin (Base Period: WY1977-1988) 114
Table 3-15. Exceedance frequencies for the proposed determination methodology for
the S-191 Summary Basin 116
Table 3-16. Summary of historical data for the Lower Kissimmee Sub-watershed 121
Table 3-17. Comparison of Base Period with period of record data for Lower
Kissimmee Sub-watershed 122
Table 3-18. Estimates of annual Load Targets and Limits for the historical period of
record for the Lower Kissimmee Sub-watershed (Base Period: WY1977-1984) 126
Table 3-19. Exceedance frequencies for the proposed determination methodology for
the Lower Kissimmee Sub-watershed128
Table 3-20. Summary of historical data for the C-44 Hydrologic Unit. 132
Table 3-21. Comparison of base period with period of record data for the C-44
Hydrologic Unit134
Table 3-22. Annual adjusted rainfall for the period of record for the C-44 Hydrologic
Unit (Base Period: WY2000-2010) 139
Table 3-23. Exceedance frequencies for the proposed performance measure
methodology for the C-44 Hydrologic Unit141
Table 3-24. L-8 Summary Basin inflow and outflow structures
Table 3-25. Summary of historical data for the L-8 Summary Basin
Table 3-26. Comparison of Base Period with period of record data and WY2001-2010
for the L-8 Summary Basin148
Table 3-27. Annual adjusted rainfall for the historical period of record for the L-8
Summary Basin (Base Period: WY1995-2003)153
Table 3-28. Exceedance frequencies for the proposed determination methodology for
the L-8 Summary Basin154
Table 3-29. Indian Prairie Sub-watershed inflow and outflow structures. 157
Table 3-30. Summary of historical data for the Indian Prairie Sub-watershed. 160
Table 3-31. Comparison of Base Period with period of record and WY2001-2010 data
for the Indian Prairie Sub-watershed

Table 3-32. Annual adjusted rainfall, Annual Load Targets and Limits for the period of
record for the Indian Prairie Sub-watershed (Base Period: WY1989-2001) 166
Table 3-33. Exceedance frequencies for the proposed determination methodology for
the Indian Prairie Sub-watershed
Table 3-34. Summary of historical data for the Fisheating Creek Summary Basin 173
Table 3-35. Comparison of Base Period with period of record and WY2001-2010 data
for the Fisheating Creek Summary Basin
Table 3-36. Estimates of annual Load Targets and Limits for the historical period of
record for the Lower Kissimmee Sub-watershed (Base Period: WY1998-2008) 177
Table 3-37. Exceedance frequencies for the proposed determination methodology for
the Fisheating Creek Summary Basin
Table 3-38. Monthly summary of flow and TP data for the Nicodemus Slough Summary
Basin
Table 3-39. Summary of historical data for ARBUCK, the outlet structure for the
Arbuckle Creek Tributary for the WY 1992-2010 period of record
Table 3-40. Comparison of the Reference Period with the period of record data for
Arbuckle Creek
Table 3-41. Annual adjusted rainfall for the historical period of record for the
Arbuckle Creek Tributary (Reference Period: WY1997-2007)
Table 3-42. Exceedance frequencies for the proposed determination methodology for
the Arbuckle Creek basin
Table 3-43. Summary of historical data for JOSEPHIN, the outlet structure for the
Josephine Creek Tributary for the WY 1997-2010 period of record
Table 3-44. Comparison of the Reference Period with the period of record data for
Josephine Creek
Table 3-45. Annual adjusted rainfall for the historical period of record for the
Josephine Creek Tributary (Reference Period: WY1997-2004)
Table 3-46. Exceedance frequencies for the proposed determination methodology for
the Josephine Creek basin
Table 3-47. Summary of historical data for the S-4/Industrial Canal Hydrologic Unit.
204
Table 3-48. Comparison of Base Period with period of record and WY2001-2010 data
for the S-4/Industrial Canal Hydrologic Unit
Table 3-49. Annual adjusted rainfall for the historical period of record for the S-
4/Industrial Canal Hydrologic Unit (Base Period: WY1993-2001)
Table 3-50. Exceedance frequencies for the proposed determination methodology for
the S-4/Industrial Canal Hydrologic Unit
Table 3-51. Summary of historical data for the East Caloosahatchee Hydrologic Unit.
215
Table 3-52. Comparison of Base Period with period of record and WY2001-2010 data
for the East Caloosahatchee Hydrologic Unit
for the East Calousanatence fryurologic Unit.

Table 3-53. Annual adjusted rainfall for the historical period of record for the East
Caloosahatchee Hydrologic Unit (Base Period: WY1982-1990)
Table 3-54. Exceedance frequencies for the proposed determination methodology for
the East Caloosahatchee Hydrologic Unit
Table 3-55. Summary of historical data for ABOGG, the outlet structure for the Boggy
Creek Tributary for the WY 2001-2010 period of record
Table 3-56. Comparison of the Reference Period with the period of record data for
Boggy Creek
Table 3-57. Annual adjusted rainfall for the historical period of record for the Boggy
Creek Tributary (Reference Period: WY2001-2008)
Table 3-58. Exceedance frequencies for the proposed determination methodology for
the Boggy Creek basin
Table 3-59. Summary of historical data for BNSHINGLE, the outlet structure for the
Shingle Creek Tributary for the WY 1999-2010 period of record
Table 3-60. Comparison of the Reference Period with the period of record data for
Shingle Creek
Table 3-61. Annual adjusted rainfall for the historical period of record for the Shingle
Creek Tributary (Reference Period: WY2001-2008).
Table 3-62. Exceedance frequencies for the proposed determination methodology for
the Shingle Creek basin
Table 3-63. South Lake Okeechobee Sub-Watershed basins and Lake discharge
structures
Table 3-64. Annual summary of total discharges from the EAA Basin
Table 3-65. East Beach Water Control District TP Load Performance Measure. 256
Table 3-66. Summary of historical discharges from EBWCD
Table 3-67. ESWCD and Closter TP Load Performance Measure
Table 3-68. Summary of historical discharges from ESWCD & Closter. 259
Table 3-69. SSDD TP Load Performance Measure
Table 3-70. Summary of historical discharges from SSDD
Table 3-71. SFCD TP Load Performance Measure
Table 3-72. Summary of historical discharges from SFCD. 263

LIST OF FIGURES

Figure 1-1. Sub-watershed level map of the Lake Okeechobee Watershed
Figure 1-2. Flowchart - annual performance determination
Figure 1-3. Comparison of the scaled observed Base Period annual TP loads with the
annual targets and limits for the S-133 Summary Basin based on a 25% load
reduction
Figure 1-4. Comparison of the scaled observed Base Period annual TP loads with the
annual targets and limits for the S-154 Summary Basin based on a 35% load
reduction
Figure 1-5. Comparison of the scaled observed Base Period annual TP loads with the
annual targets and limits for the S-191 Summary Basin based on a 40% load
reduction12
Figure 1-6. Comparison of the scaled observed Base Period annual TP loads with the
annual targets and limits for the Lower Kissimmee Sub-watershed based on a 30%
load reduction13
Figure 1-7. Comparison of the scaled observed Base Period annual TP loads with the
annual targets and limits for the C-44 Hydrologic Unit based on a 35% load
reduction14
Figure 1-8. Comparison of the scaled observed Base Period annual TP loads with the
annual targets and limits for the L-8 Summary Basin based on a 20% load
reduction15
Figure 1-9. Comparison of the scaled observed Base Period annual TP loads with the
annual targets and limits for the Indian Prairie Sub-watershed based on a 30%
load reduction16
Figure 1-10. Comparison of the scaled observed Base Period annual TP loads with the
annual targets and limits for the Fisheating Creek Summary Basin based on a 30%
load reduction17
Figure 1-11. Comparison of the scaled observed Base Period annual TP loads with the
annual targets and limits for the S-4/Industrial Canal Hydrologic Unit based on a
30% load reduction
Figure 1-12. Comparison of the scaled observed Base Period annual TP loads with the
annual targets and limits for the East Caloosahatchee Hydrologic Unit
Figure 1-13. Comparison of the scaled observed Base Period annual TP loads with the
annual targets and limits for the Arbuckle Creek Tributary
Figure 2-1. Sub-watershed level map of the Lake Okeechobee Watershed
Figure 2-2. Chapter 40E-61, F.A.C. proposed boundary changes
Figure 2-3. Conceptual diagram of collective source control and regional projects' TP
load reductions to achieve water quality objectives
Figure 3-1. Taylor Creek-Nubbin Slough Sub-watershed boundary and discharge
monitoring locations

Figure 3-2. Schematic of Taylor Creek-Nubbin Slough Sub-watershed, summary basins
and selected rainfall stations
Figure 3-3. Comparison of scaled annual loads to the Annual Load Targets and Limits
for the S-133 Summary Basin
Figure 3-4. Comparison of WY2001-2010 observed loads to the Annual Load Targets
and Limits for the S-133 Summary Basin
Figure 3-5. Comparison of scaled annual loads with the Annual Load Targets and
Limits for the S-154 Summary Basin102
Figure 3-6. Comparison of WY2001-2010 observed loads to the Annual Load Targets
and Limits for the S-154 Summary Basin104
Figure 3-7. Comparison of scaled annual loads with the Annual Load Targets and
Limits for the S-191 Summary Basin113
Figure 3-8. Comparison of WY2001-2010 observed loads to the Annual Load Targets
and Limits for the S-191 Summary Basin115
Figure 3-9. Lower Kissimmee Sub-watershed boundary and discharge monitoring
locations
Figure 3-10. Schematic of Lower Kissimmee Sub-watershed and the selected rainfall
stations
Figure 3-11. Comparison of scaled annual loads with the Annual Load Targets and
Limits for the Lower Kissimmee Sub-watershed
Figure 3-12. Comparison of WY2001-2010 observed loads to the Annual Load Targets
and Limits for the Lower Kissimmee Sub-watershed
Figure 3-13. East Lake Okeechobee Sub-watershed boundary and discharge
monitoring locations
Figure 3-14. Schematic of the C-44 Hydrologic Unit and the selected rainfall stations.
Figure 3-15. Comparison of scaled annual TP loads with the Annual Load Targets and
Limits for the C-44 Hydrologic Unit
Figure 3-16. Comparison of WY2001-2010 observed loads to the Annual Load Targets
and Limits for the C-44 Hydrologic Unit140
Figure 3-17. Flow diagram for the L-8 Summary Basin 143
Figure 3-18. Schematic of L-8 Summary Basin and the selected rainfall stations 145
Figure 3-19. Comparison of scaled observed loads with the Annual Load Targets and
Limits for the L-8 Summary Basin
Figure 3-20. Comparison of WY2001-2010 observed loads to the Annual Load Targets
and Limits for the L-8 Summary Basin
Figure 3-21. Indian Prairie Sub-watershed boundary and discharge monitoring
locations
Figure 3-22. Flow diagram for Indian Prairie Sub-watershed
Figure 3-23. Schematic of Indian Prairie Sub-watershed and the selected rainfall
stations

Figure 3-24. Comparison of scaled annual loads with the Annual Load Targets and
Limits for the Indian Prairie Sub-watershed.
Figure 3-25. Comparison of WY2001-2010 observed loads with the Annual Load
Targets and Limits for the Indian Prairie Sub-watershed
Figure 3-26. Fisheating Creek-Nicodemus Slough Sub-watershed boundary and
discharge monitoring locations
Figure 3-27. Schematic of Fisheating Creek-Nicodemus Slough Sub-watershed and the
selected rainfall stations
Figure 3-28. Comparison of scaled loads with the Annual Load Targets and Limits for
the Fisheating Creek Summary Basin
Figure 3-29. Comparison of WY2001-2010 observed loads to the Annual Load Targets
and Limits for the Fisheating Creek Summary Basin
Figure 3-30. Lake Istokpoga Sub-watershed boundary and discharge monitoring
locations (from SFWMD)
Figure 3-31. Schematic of Lake Istokpoga Sub-watershed (from SFWMD) 184
Figure 3-32. Comparison of observed annual loads with the Annual Load Targets and
Limits for the Arbuckle Creek Tributary
Figure 3-33. Comparison of WY2001-2010 loads with Reference Period loads and
Annual Load Targets, adjusted for hydrologic variability, for the Boggy Creek
Tributary
Figure 3-34. Comparison of observed annual loads with the Annual Load Targets and
Limits for the Josephine Creek Tributary
Figure 3-35. Comparison of WY2001-2010 loads with Reference Period loads and
Annual Load Targets, adjusted for hydrologic variability, for the Josephine Creek
Tributary
Figure 3-36. West Lake Okeechobee Sub-watershed boundary and discharge
monitoring locations
Figure 3-37. Schematic of West Lake Okeechobee Sub-watershed, hydrologic units and
selected rainfall stations
Figure 3-38. S-4/Industrial Canal Hydrologic Unit Flow Schematic
Figure 3-39. Comparison of scaled annual loads with the Annual Load Targets and
Limits for the S-4/Industrial Canal Hydrologic Unit.
Figure 3-40. Comparison of WY2001-2010 loads with Base Period loads and Annual
Load Targets, adjusted for hydrologic variability, for the S-4/Industrial Canal
Hydrologic Unit
Figure 3-41. Flow diagram for East Caloosahatchee basin
Figure 3-42. Comparison of scaled annual loads with the Annual Load Targets and
Limits for the East Caloosahatchee Hydrologic Unit
Figure 3-43. Comparison of WY2001-2010 loads with Base Period loads and Annual
Load Targets, adjusted for hydrologic variability, for the East Caloosahatchee
Hydrologic Unit
J

Figure 3-44. Upper Kissimmee Sub-watershed boundary and discharge monitoring
locations (from SFWMD)224
Figure 3-45. Schematic of Upper Kissimmee Sub-watershed (WY76-07) (from
SFWMD)
Figure 3-46. Schematic of Upper Kissimmee Sub-watershed (WY08-Present) (from
SFWMD)
Figure 3-47. Comparison of observed annual loads with the Annual Load Targets and
Limits for the Boggy Creek Tributary232
Figure 3-48. Comparison of WY2001-2010 loads with Reference Period loads and
Annual Load Targets, adjusted for hydrologic variability, for the Boggy Creek
Tributary
Figure 3-49. Comparison of observed annual loads with the Annual Load Targets and
Limits for the Shingle Creek Tributary
Figure 3-50. Comparison of WY2001-2010 loads with Reference Period loads and
Annual Load Targets, adjusted for hydrologic variability, for the Shingle Creek
Tributary
Figure 3-51. South Lake Okeechobee Sub-watershed boundary and monitoring
locations for structures that discharge into Lake Okeechobee
Figure 3-52. Annual summary of total discharges from the EAA Basin
Figure 3-53. Ch. 298 District basins map and flow schematic
Figure 3-54. Comparison of the scaled Base Period annual TP loads with the Annual
Targets and Limits for the EBWCD based on a 25% load reduction
Figure 3-55. Comparison of the scaled Base Period annual TP loads with the Annual
Targets and Limits for the ESWCD & Closter based on a 25% load reduction 258
Figure 3-56. Comparison of the scaled Base Period annual TP loads with the Annual
Targets and Limits for the SSDD based on a 25% load reduction
Figure 3-57. Comparison of the scaled Base Period annual TP loads with the Annual
Targets and Limits for the SFCD based on a 25% load reduction

ACRONYMS AND ABBREVIATIONS

area adjustment factor
acre
acre feet
best management practice
concentrated animal feeding operation
Comprehensive Everglades Restoration Plan
Comprehensive Everglades Restoration Plan Regulatory Act
cubic feet per second
concentration
South Florida Water Management District
Everglades Agricultural Area
East Beach Water Control District
Everglades Construction Project
Environmental Resource Permit
East Shore Water Control District
Florida Administrative Code
Florida Department of Agriculture and Consumer Services
Florida Department of Environmental Protection
Fisheating Creek
Florida Land Use, Cover, and Forms Classification Systems
Florida Statutes
feet
flow-weighted mean
geographic information system
University of Florida's Institute of Food and Agricultural Sciences
inches

kg	kilogram(s)
lb and #	pound
ln	natural logarithm
LOPA	Lake Okeechobee Protection Act
LOPP	Lake Okeechobee Protection Plan
LOOP	Lake Okeechobee Operating Permit
LOWOD	Lake Okeechobee Works of the District
MA	moving average
mt	metric tons
NEEPP	Northern Everglades and Estuaries Protection Program
NGVD	National Geodetic Vertical Datum
NPDES	National Pollutant Discharge Elimination System
R^2	coefficient of determination
SFCD	South Florida Conservancy District
SFWMD	South Florida Water Management District
SSDD	South Shore Drainage District
STA	stormwater treatment area
SWIM	Surface Water Improvement and Management
ppb	parts per billion
TCNS	Taylor Creek-Nubbin Slough
TMDL	Total Maximum Daily Load
TN	total nitrogen
ТР	total phosphorus
UCL	upper confidence limit
USGS	United States Geological Survey
USACE	United States Army Corps of Engineers
USEPA	United States Environmental Protection Agency
μg/L	microgram per liter

Gary Goforth, Inc. February 2013

WAM	Watershed Assessment Model
WOD	Works of the District
WY	water year, extending from May 1 to April 30 and identified by the calendar
	year when the water year ends, e.g., WY2010 extended from May 1, 2009 to
	April 30, 2010
yr	year

1. EXECUTIVE SUMMARY

2

4

3 1.1 Background and Purpose

5 This Draft Technical Support Document was developed in support of the South Florida 6 Water Management District's (District's) Regulatory Source Control Program (Chapter 40E-7 61, F.A.C, Works of the District) which is being amended to meet Northern Everglades and 8 Estuaries Protection Program (NEEPP) mandates. The Regulatory Source Control Program 9 was established in 1989 in the Lake Okeechobee Watershed under the authority of the 10 Surface Water and Improvement Management (SWIM) Act. The portion of the SWIM Act 11 relating specifically to Lake Okeechobee was subsumed and eventually became the NEEPP 12 (373.4595 F.S.). The NEEPP mandates complementary source control programs by the three 13 coordinating agencies (the Florida Department of Environmental Protection (FDEP or 14 Department), the District and the Florida Department of Agriculture and Consumer Services 15 (FDACS)), encompassing an expanded Lake Okeechobee Watershed, and the St. Lucie River 16 Watershed and the Caloosahatchee River Watershed. The NEEPP states that "by January 1, 17 2004 the District shall submit to the Department a permit modification to the Lake 18 Okeechobee structure permits to incorporate proposed changes necessary to ensure that 19 discharges through the structures covered by this permit achieve state water quality 20 standards, including the total maximum daily load established in accordance with S. 403.067. 21 These changes shall be designed to achieve such compliance with state water quality 22 standards no later than January 1, 2015". Total phosphorus (TP) is the pollutant of concern 23 for Lake Okeechobee while TP and total nitrogen have been identified as pollutants of 24 concern for the St. Lucie River and Caloosahatchee River Watersheds. In response to these 25 legislative changes, the District must amend the 1989 Chapter 40E-61, F.A.C., to effectuate 26 the NEEPP requirements.

28 One of the fundamental components of the Regulatory Source Control Program is water 29 quality performance metrics coupled with water quality monitoring. The water quality 30 performance metrics currently specified in Chapter 40E-61, F.A.C, are not in alignment with 31 the Total Phosphorus Total Maximum Daily Load goals established in the NEEPP (140 32 metric tons per year (mt/yr) TP load, including 35 mt/yr due to atmospheric deposition). The 33 performance metrics for the 1989 Chapter 40E-61, F.A.C. were concentration based limits 34 from individual parcels within the watershed and were aligned with the 360 mt/yr TP load 35 SWIM Plan target for Lake Okeechobee. Further, the NEEPP mandates that monitoring be 36 conducted at representative sites to verify the effectiveness of the source control programs.

37

38 This Draft Technical Support Document presents 14 preliminary water quality performance 39 metrics recommended for consideration in amendments to Chapter 40E-61, F.A.C., as 40 presented in **Table 1-1**. These performance metrics estimate the TP reductions in runoff that 41 are reasonably expected from the long term implementation of the source control programs 42 mandated by the NEEPP based on monitoring sites that are representative of runoff. The 43 quantitative methods are referred to as "performance measure methodologies". When the 44 performance measures are discussed as a whole, the term "basin" will be used to describe the 45 sub-watersheds, summary basins, and hydrologic units. The resulting metrics are referred to 46 as performance measures or performance indicators depending on the characteristics of the 47 data on which they are based. Performance measures are typically TP loads incorporating 48 hydrologic variability based on a representative base period dataset. Performance indicators 49 are also generally TP loads incorporating hydrologic variability based on a representative 50 reference period. However, performance indicators are recommended when all the criteria for 51 establishing a performance measure are not met. Performance metrics provide justification 52 for implementation of additional water quality improvement activities, or re-evaluation of the 53 existing activities by the respective agencies. The level of activities that may be triggered in 54 each case will be defined by the coordinating agencies based on jurisdiction. For areas where 55 no performance measure methodology is being proposed for reasons described in Section 3.0

of this report the water quality will be assessed annually to determine if there is an increasing
trend. The NEEPP establishes that a Memorandum of Understanding shall be executed
among the agencies to ensure a complementary approach. The current MOU was executed in
2011.

- 60
- 61

Table 1-1. Lake Okeechobee Watershed TP Load Performance Metrics.

Basin	Performance Measure or Performance Indicator	Base Period	Base Period Median Load mt	Recommended Source Control Reduction
S-133	Performance Measure	WY1977-1986	7.4	25%
S-154	Performance Measure	WY1977-1984	8.3	35%
S-191	Performance Measure	WY1977-1988	89.7	40%
Lower Kissimmee	Performance Measure	WY1977-1990	56.1	30%
C-44	Performance Measure	WY2000-2010	52.9	35%
L-8	Performance Measure	WY1995-2003	17.1	20%
Indian Prairie	Performance Measure	WY1989-2001	67.6	30%
Fisheating Creek	Performance Measure	WY1998-2008	67.6	30%
S-4/Industrial Canal	Performance Measure	WY1993-2001	17.6	30%
East Caloosahatchee	Performance Measure	WY1982-1990	54.9	30%
Arbuckle Creek	Performance Indicator	WY1997-2007	38.8	0%
Josephine Creek	Performance Indicator	WY1997-2004	3.0	0%
Boggy Creek	Performance Indicator	WY2001-2008	5.0	0%
Shingle Creek	Performance Indicator	WY1999-2007	17.4	0%

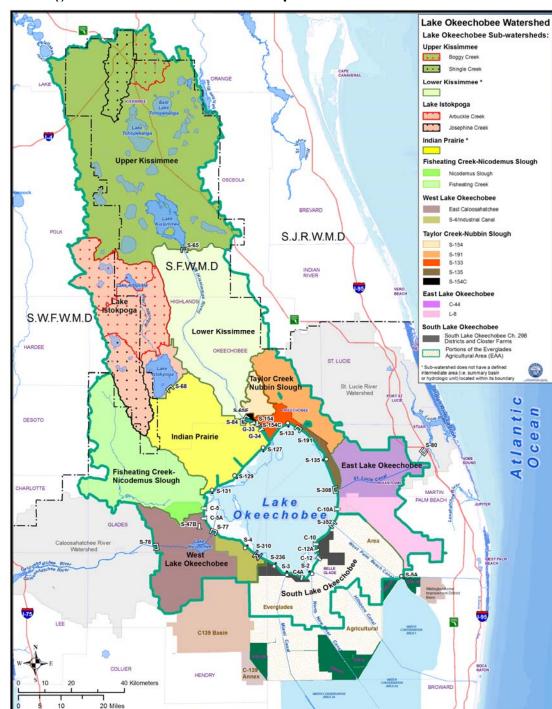
62

64

65

66

63 Notes:


1. No performance metric will be assigned to the S-135, S-154C and Nicodemus Slough basins. However, the water quality from these basins will be assessed annually to determine if there is an increasing trend.

67 2. See Section 3.9 for a summary of the South Lake Okeechobee Sub-watershed
68 performance measure metrics.
69

In Section 1.2 below is a description of how performance metrics were developed, how performance will be evaluated every year, and a description of the performance metrics for each of the basins, individually. This is a preliminary recommendation for performance metrics and may be refined during the technical and stakeholder review process prior to adoption.

Figure 1-1. Sub-watershed level map of the Lake Okeechobee Watershed.

lursul\ad.sfwmd.gov/DFSRoot\err_gis\data\projects\EVG\lok\cRucks_LOK_PerformanceMeasures\LOK_Allsubwatersheds_modified.mxd

76

77 1.2 Performance Measures Methodologies Development

78 In order to develop these performance measure methodologies, the following general79 activities were conducted.

- Monthly and annual runoff and TP load for each basin within the watershed were
 calculated based on available historical data through Water Year 2010 (WY2010) for
 appropriate basin structures. When a basin received inflows from upstream sources
 (e.g., other basins or Lake Okeechobee) the pass-through load was accounted for
 using the method applied to the Everglades Agricultural Area (EAA) under Chapter
 40E-63, F.A.C.
- 86 2. Representative rainfall monitoring stations were identified and an equation to
 87 estimate basin rainfall using a Thiessen polygon weighting method was developed.
- 88 3. A base period (for performance measures) or reference period (for performance indicators) was selected for each basin. The base period or reference period is the 89 90 benchmark period of historical observed data on which performance metrics are 91 based. Base periods met, as much as possible, the following criteria: having at least 92 eight years of concentration and flow data to adequately represent nutrient levels through a wide range of hydrologic conditions; being representative of current 93 94 operating conditions affecting nutrient loading (unless these conditions can be 95 corrected through data adjustments); having a reasonable correlation between rainfall 96 and nutrient loads; preceding full implementation of collective source control 97 measures; being free of trends in rainfall, flow or loads (unless these trends can be 98 eliminated through data adjustments); and being free of unexplained outliers in the 99 rainfall, flow, or load data.
- 100 4. Ninety TP load annual prediction equations were examined for each basin to
 101 determine which equation would better estimate the base period or reference period
 102 TP annual load in response to hydrologic variability from year to year. Multiple
 103 selection factors were used to select the recommended regression equation including,

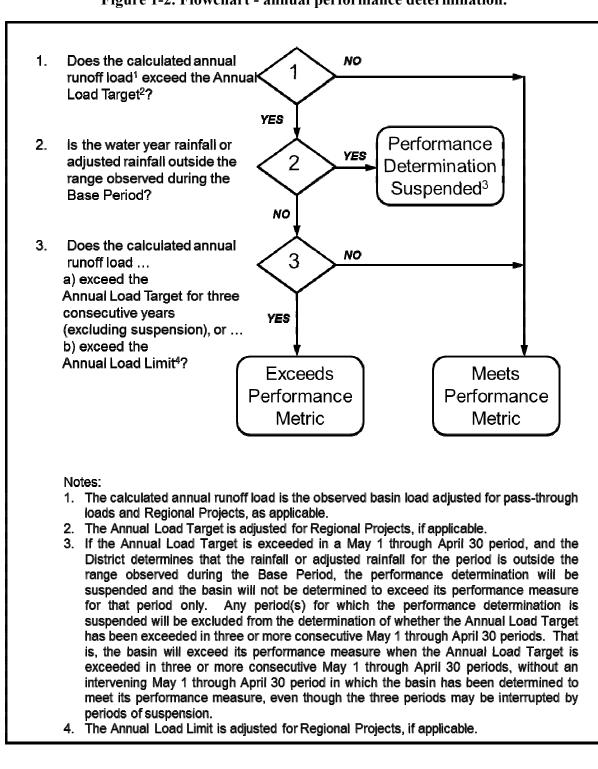
104 the strength of the correlation, the statistical significance of the regression 105 coefficients, the standard error of the regression equation, the variance of the 106 residuals, collinearity of predictor variables, the presence of outliers, the presence of 107 temporal trends during the base period or reference period, and the presence of 108 overparameterization.

- 109 5. Nutrient reductions were estimated based on work completed in the development of 110 the watershed protection plans for Lake Okeechobee, St. Lucie River, and 111 Caloosahatchee River (Bottcher 2006 and SWET 2008). These reductions are based 112 on implementation of regulations and best management practices (BMPs) applicable 113 to each land use (e.g., FDACS Notice of Intent owner-implemented BMPs, 114 operational BMPs or activities required by existing permits or regulations). For the 115 Lake Istokpoga and Upper Kissimmee tributaries, in order to estimate requirements 116 for TP reduction due to source controls, the first step was to review historic water 117 quality data against the numeric nutrient criterion (120 µg/l for TP) (Chapter 62.302, 118 F.A.C.). Maintaining base period or reference period levels was considered 119 reasonable when the period of record median flow weighted mean (FWM) TP 120 concentration was below this criterion.
- 121 6. Since the goal of the performance metrics is to evaluate the effectiveness of the 122 source control programs, independent from regional water quality treatment 123 construction projects (e.g., stormwater treatment area), this Draft Technical Support 124 Document provides a methodology to account for such projects. In such cases, the 125 basin's measured runoff load will be adjusted to account for the load reduction 126 occurring within the regional project. In addition, the basin's calculated Annual 127 Load Target and Limit will be adjusted to account for the land occupied by the 128 regional project. The adjustment will be similar to the adjustment used in the 129 Everglades Agricultural Area (EAA) under Chapter 40E-63, F.A.C. The same 130 methodology will be used for future regional projects after they become operational.

1.3 **Annual Performance Determination** 131

132

133 Total phosphorus loads measured in discharges at each basin outlet structure, after 134 accounting for pass-through loads and regional projects, will be assessed annually against 135 two performance metrics: an Annual Load Target and an Annual Load Limit (Figure 1-2). 136 The Annual Load Target and the Annual Load Limit are further defined in Section 2.5. In 137 general, the Target represents the expected level of load or concentration resulting from the 138 regulatory source control implementation. In the case of many performance measures the 139 Target level varies annually to account for rainfall. The Limit represents the upper 90 140 percent confidence limit of a Target. Previous regulatory programs have established this as 141 an acceptable level to balance assurance that exceedance is not due to random variation and 142 also the resource is protected from exceptionally high annual levels.


143

144 The Target and Limit are applied in combination to evaluate annual and longer-term success 145 in meeting required levels. The Limit is an effective indicator for a single year's levels, but 146 it may not detect a less drastic shift or trend increase above regulated levels. Therefore a 147 Target test is also applied, which approximates the 90% confidence level on three 148 consecutive years of data. If the source controls are performing as expected, random 149 variation will result in annual levels with equal chance of being above and below the Target. 150 The statistical logic of a three year Target test equating to an 87.5% confidence level is 151 explained by the following "coin flip" analogy.

- 152 • A single year the Target is exceeded, there is a 50% chance that source controls are 153 performing as expected.
- 154 • For two consecutive years to both be above the Target there is still a 25% chance 155 that source controls are performing as expected.
- 156 • For a third consecutive year to exceed the Target, only a 12.5% chance exists that the 157 source controls are performing and random variation is causing the exceedance. This 158 equates to 87.5% confidence that levels are exceeding expectations.

161 Tables 1.2 through 1.15 present the performance metrics for each of the 14 basins with 162 adequate water quality and flow data for the development of performance metrics. The 163 metrics include the equations for calculating the annual load targets, limits, and standard 164 errors of the predictions, along with the minimum and maximum rainfall (or adjusted 165 rainfall as applicable) ranges within which the performance metrics can be evaluated. 166 Figures 1-3 through 1-16 provide comparisons of the scaled load data with the proposed 167 targets and limits for the base (or reference) periods. Scaled means that the annual loads of 168 the base (or reference) period are decreased by the Recommended Source Control 169 Reduction, thus the graph depicts the fit of the prediction.

170

171 The variables used in the prediction equations are defined below:

		1 1
172	X =	12-month total rainfall for the evaluation year (inches), or ln(rainfall),
173		if applicable
174	$X_m =$	average value of annual rainfall in the base period, or ln(rainfall), if
175		applicable
176	$\mathbf{P} =$	12-month total rainfall for the previous water year (inches), or
177		ln(rainfall), if applicable
178	$P_m =$	average value of the predictor (previous rain) in the base period, or
179		ln(previous rain), if applicable
180	C =	coefficient of variation calculated from 12 monthly rainfall totals), or
181		ln(coefficient of variation), if applicable
182	$C_m =$	average value of the rainfall coefficient of variation in the base
183		period, or ln(coefficient of variation), if applicable
184	S =	skewness calculated from the 12 monthly rainfall totals, or
185		ln(skewness), if applicable
186	$S_m =$	the average value of the rainfall skewness in the base period, or
187		ln(skewness), if applicable
188	$SE_p =$	standard error of the prediction (mt, ln(mt) or sqrt(mt) as applicable)

Table 1-2. S-133 Summary Basin TP Load Performance Measure.

	Base Period	Median Annual		D 1		Base Perio	od Rainfall ¹
	Median Annual Load mt	Load with Source Controls mt	Explained Variance (R ²)	riance Recommended Source Reduction		Minimum inches	Maximum inches
	7.4	5.5	79%	2	25%	30.03	77.63
		Target $=$ -200	0.98003 + 19.638	X + 29.4156	68 P + 30.5265	57 C	
			Limit = Target	+ 1.43976 S	SΕ		
	SE = 3.885 0.3806	541 [1 + 1/10 + 8 (X-X _m) (P–P _n	$-3.01635 (X-X_m)^2$ n) + 2.9188 (X-X _n)	$^{2} + 4.00198$ (m) (C-Cm) + 2	$(P-P_m)^2 + 10.5$ 8.67534 (P-P_m	1972 (C-C) (C-C _m)]	$(2m)_{0.5}^{2}$ +
У	$K = \ln(Rain)$ and		the log transformed a the mean of the log tr			the base peri	iod
	S-133 - TP 30				-Annual Load Lim	it	
	25 -		\frown		▲ Scaled Load Annual Load Targ	get	
	Vuunal Load, mt					<u> </u>	
		/					
	10 -		A		/	\nearrow	
	5 -						
	Water Year ⁽⁾ –	1977 1978	1979 1980	1981 1982	1983 1984	1985	1986

195 196

196

198 199

200

201

Annual Load Limit

Annual Load Target

Scaled Load

7.476

1.820

0.639

9.839

2.316

3.463

17.364

6.980

11.378

26.153

17.148

18.785

13.328

4.070

6.693

Figure 1-3. Comparison of the scaled observed Base Period annual TP loads with the

annual targets and limits for the S-133 Summary Basin based on a 25% load reduction.

9.049

0.000

2.588

20.066

17.510

13.223

19.221

12.711

12.444

14.654

14.122

8.378

6.669

1.051

0.137

Table 1-3. S-154 Summary Basin TP Load Performance Measure.

Base Period Median Annual	Median Annual Load with		Recommended Source Control	Base Perio	od Rainfall
Load mt	Source Controls mt	Explained Variance (R ²)	Reduction	Minimum inches	Maximum inches
8.3	5.4	80%	35%	30.06	56.20
	Т	arget = exp(-5.20)	573 + 0.16556 X)		
	l	Limit = Target * e	exp (1.43976 SE)		
	SE =	= 0.74134 [1 + 1/2	$(X-X_m)^2 / 485.64409]^6$).5	

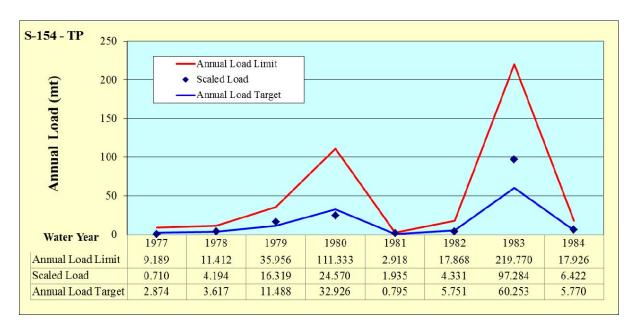
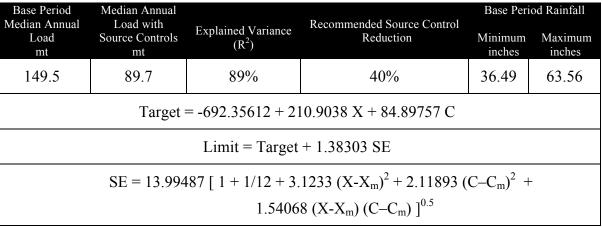


Figure 1-4. Comparison of the scaled observed Base Period annual TP loads with the


annual targets and limits for the S-154 Summary Basin based on a 35% load reduction.

206 207 208

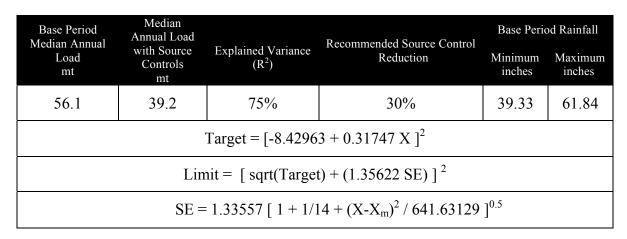
Table 1-4. S-191 Summary Basin TP Load Performance Measure.

212 The Based on adjusted rainfall values 213 $X = \ln(\text{Rain})$ and $X_m =$ the mean of

 $X = \ln(Rain)$ and $X_m =$ the mean of the log transformed annual rain totals for the base period

C = ln(CV) and C_m = the mean of the log transformed annual CV for the base period

214 215 216



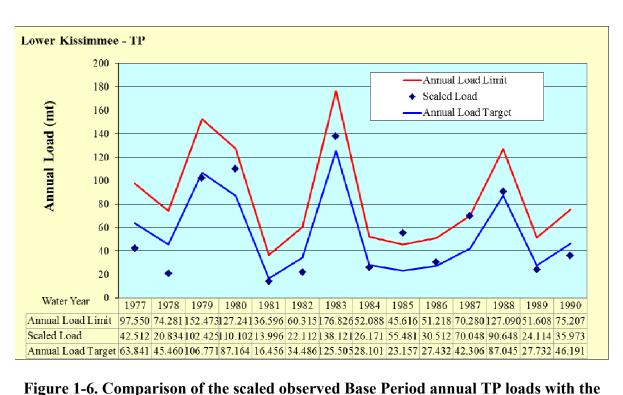
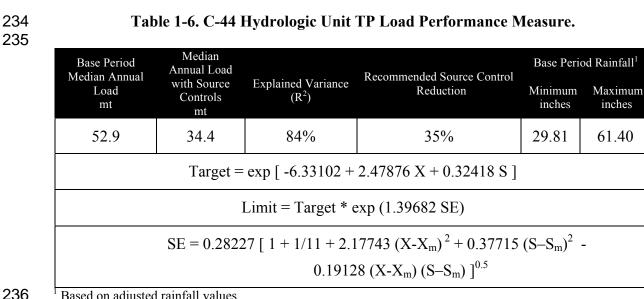
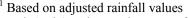
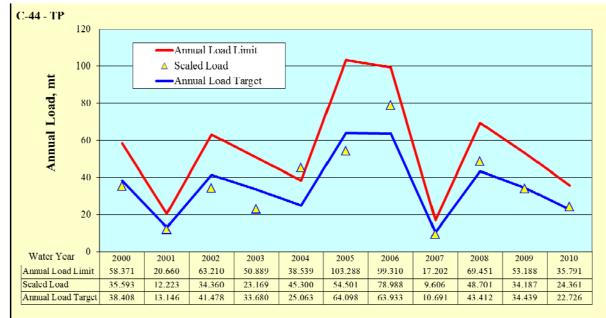

Figure 1-5. Comparison of the scaled observed Base Period annual TP loads with the annual targets and limits for the S-191 Summary Basin based on a 40% load reduction.

Table 1-5. Lower Kissimmee Sub-watershed TP Load Performance Measure.





annual targets and limits for the Lower Kissimmee Sub-watershed based on a 30% load


reduction.

X = ln(Rain) and $X_m =$ the mean of the log transformed annual rain totals for the base period

241 242 243

Figure 1-7. Comparison of the scaled observed Base Period annual TP loads with the annual targets and limits for the C-44 Hydrologic Unit based on a 35% load reduction.

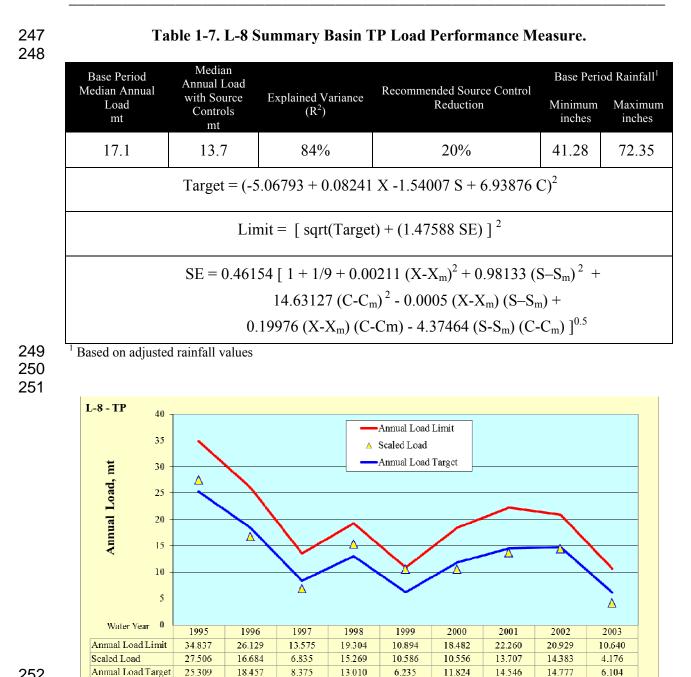


Figure 1-8. Comparison of the scaled observed Base Period annual TP loads with the annual targets and limits for the L-8 Summary Basin based on a 20% load reduction.

Table 1-8. Indian Prairie Sub-watershed TP Load Performance Measure.

Base Period Median Annual	Median Annual Load with		Recommended Source Control	Base Period Rainfall ¹		
Load mt	Source Controls mt	Explained Variance (R ²)	Reduction	Minimum inches	Maximum inches	
67.6	47.3	91%	30%	30.55	49.29	
	Target =	exp (-12.83843 +	4.02124 X + 1.76267 C)			
]	Limit = Target *	exp (1.37218 SE)			
S	SE = 0.20346 [1 + 1/13 + 3.9199	$5 (X-X_m)^2 + 3.19741 (C-C)^2$	$(2m)^2 +$		
		4.34342 (X	$(X-X_m) (C-C_m)]^{0.5}$			

¹ Based on adjusted rainfall values

X = ln(Rain) and $X_m =$ the mean of the log transformed annual rain totals for the base period

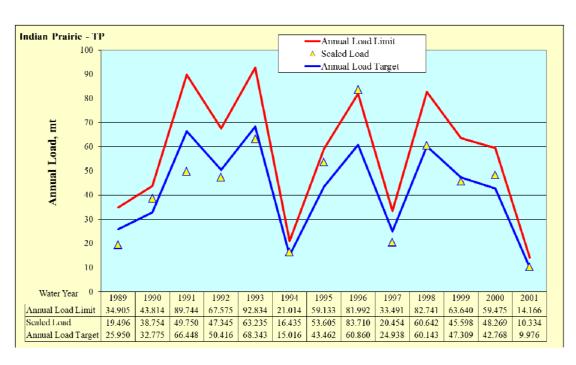
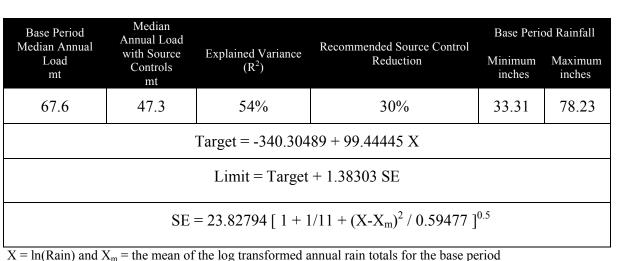
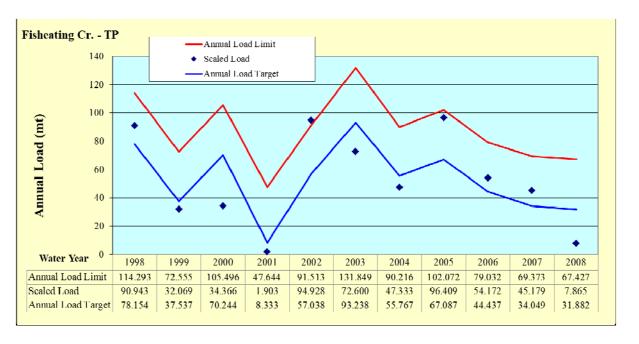



Figure 1-9. Comparison of the scaled observed Base Period annual TP loads with the annual targets and limits for the Indian Prairie Sub-watershed based on a 30% load reduction.

Table 1-9. Fisheating Creek Summary Basin TP Load Performance Measure.



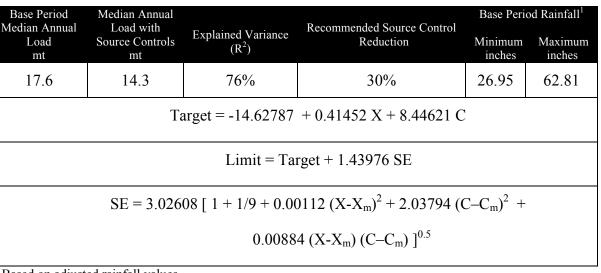
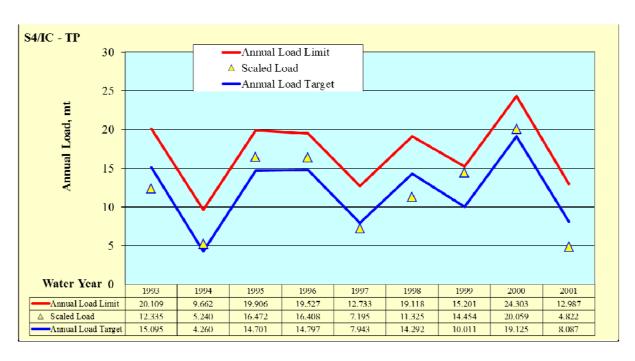


Figure 1-10. Comparison of the scaled observed Base Period annual TP loads with the

annual targets and limits for the Fisheating Creek Summary Basin based on a 30% load reduction.


Table 1-10. S-4/Industrial Canal Hydrologic Unit TP Load Performance Measure.

¹ Based on adjusted rainfall values

288 289

287

290 291 292

293

Figure 1-11. Comparison of the scaled observed Base Period annual TP loads with the

annual targets and limits for the S-4/Industrial Canal Hydrologic Unit based on a 30%

load reduction.

Table 1-11. East Caloosahatchee Hydrologic Unit TP Load Performance Measure.

Base PeriodMedian AnnualMedian AnnualLoad with Source			Recommended Source Control	Base Period Rainfall		
Load mt	Controls mt	trols Explained Variance Reduction (R^2)		Minimum inches	Maximum inches	
54.9	38.5	73%	30%	42.29	72.47	
		Target = -136.78	88 + 3.61027 X			
		Limit = Target	+ 1.41492 SE			
	SE = 21	.79613 [1 + 1/9 +	$(X-X_m)^2 / 675.50602]^{0.5}$			



Figure 1-12. Comparison of the scaled observed Base Period annual TP loads with the annual targets and limits for the East Caloosahatchee Hydrologic Unit based on a 30% load reduction.

X = ln(Rain) and $X_m =$ the mean of the log transformed annual rain totals for the base period

mt	mt	(R^2)		inches	inches	
38.8	38.8	68%	0%	33.74	77.45	1
]	Target = -406.1006	66 + 115.44341 X			
		Limit = Target	+ 1.38303 SE			
	SE = 18	8.27506 [1 + 1/11	$+ (X-X_m)^2 / 0.46933]^{0.5}$			1

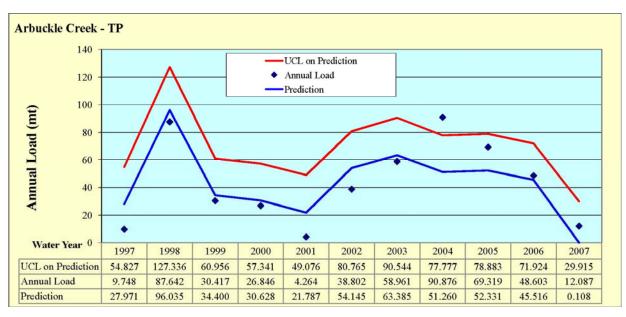
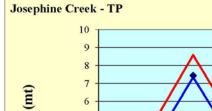


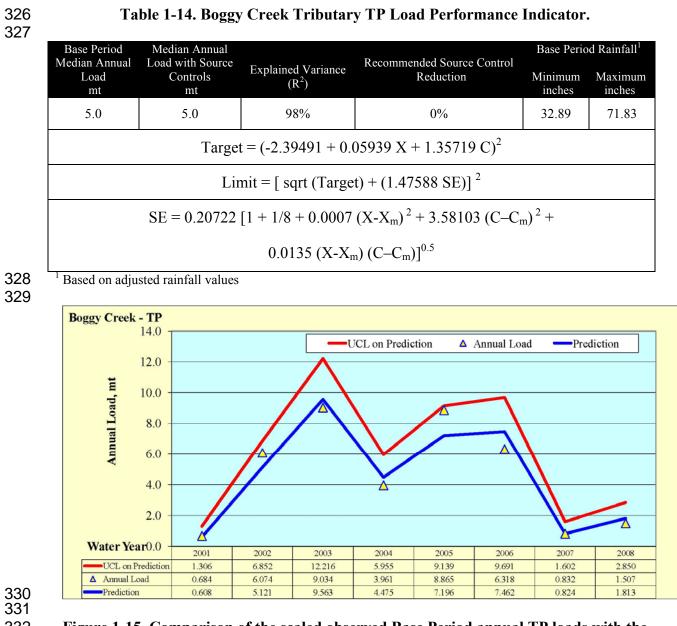
Figure 1-13. Comparison of the scaled observed Base Period annual TP loads with the
 annual targets and limits for the Arbuckle Creek Tributary based on a 0% load
 reduction.



Base Period Median Annual	Median Annual Load with Source		Recommended Source Control	Base Peric	od Rainfall
Load mt	Controls mt	Explained Variance (R ²)	Reduction	Minimum inches	Maximum inches
3.0	3.0	93%	0%	36.85	77.63
		Target = -33.986	77 + 9.49604 X		
		Limit = Target	+ 1.43976 SE		
	SE = 0).68581 [1 + 1/8 +	$(X-X_m)^2 / 0.40023]^{0.5}$		

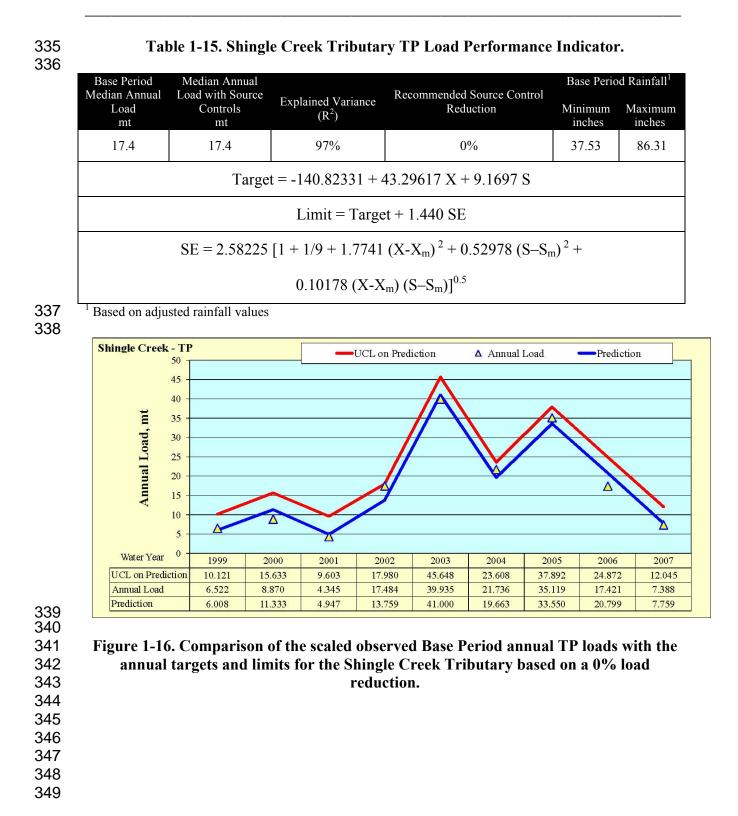
316 317

X = ln(Rain) and $X_m =$ the mean of the log transformed annual rain totals for the base period


9 8 6 6 5 6 4 2 1 0				UCL on Predi Annual Load Prediction				<u>\</u>
ALL AND AL	1997	1998	1999	2000	2001	2002	2003	2004
Water Year UCL on Prediction	2.526	8.573	2.752	5.059	1.430	4.434	6.342	4.719
Annual Load	0.887	7.435	2.349	2.869	0.360	3.139	5.525	4.453

325

Figure 1-14. Comparison of the scaled observed Base Period annual TP loads with the annual targets and limits for the Josephine Creek Tributary based on a 0% load reduction.



- Figure 1-15. Comparison of the scaled observed Base Period annual TP loads with the annual targets and limits for the Boggy Creek Tributary based on a 0% load reduction.
- 333 334

350

351 352

2. INTRODUCTION AND OBJECTIVES

This Draft Technical Support Document was developed in support of the District's 353 354 Regulatory Source Control Program (Chapter 40E-61, F.A.C, also known as "Works of the 355 District"). The program was established in 1989 in the Lake Okeechobee Watershed under 356 the authority of the SWIM Act. Recent legislative changes have, among other things, 357 directed complementary source control programs by the three coordinating agencies (the 358 FDEP, the District and the FDACS), expanded the Lake Okeechobee Watershed, and 359 expanded source control activities to include the St. Lucie River Watershed and the 360 Caloosahatchee River Watershed.

361

362 In response to these legislative changes, the District must update the 1989 source control rule 363 to effectuate the NEEPP requirements, including developing updated performance metrics. 364 The statute directs that where water quality problems are detected despite the appropriate 365 implementation of the BMPs a reevaluation of the BMPs shall be initiated. The performance 366 metrics will ultimately be incorporated into Chapter 40-61, F.A.C., and will serve to meet the 367 statutory requirement.

368

This *Draft Technical Support Document* presents quantitative methods for assessing the TP reductions in runoff resulting from the collective source control programs in the subwatersheds, summary basins and hydrologic units within the Lake Okeechobee Watershed and portions of the Caloosahatchee River Watershed and St. Lucie River Watershed that overlap with the Lake Okeechobee Watershed boundary¹ (Figure 2-1 and Table 2-1). The quantitative methods are referred to as "performance measure methodologies".

¹ The performance measure methodologies for the Caloosahatchee River Watershed and St. Lucie River Watershed will be detailed in *Technical Support Documents* for those respective sub-watersheds, including the NEEPP required nitrogen component.

375 2.1 Organization of the Draft Technical Support Document

376 Section 1 of this *Draft Technical Support Document* provided an Executive Summary of the 377 performance measure methodologies for the respective sub-watersheds, summary basins and 378 hydrologic units within the Lake Okeechobee Watershed. Where possible, consistency was 379 maintained with previously documented naming and delineations of these basins. However, 380 this was not always possible as this expansive area has been referenced in a variety of prior 381 documents using different terms, e.g., some summary basins in Lake Okeechobee documents 382 are referred to as sub-watersheds in river watershed documents. Since some of the basins 383 discussed in this document discharge to more than one watershed (i.e., to Lake Okeechobee 384 and to a river watershed), a common terminology was used for those specific basins: 385 "hydrologic units", for example, "C-44 Hydrologic Unit". However, when the methodology 386 is discussed as a whole, the term "basin" will be used to describe sub-watersheds, summary 387 basins and hydrologic units.

388

Section 2 provides general background information for the Project. Section 3 summarizes the performance measure methodologies for basins of the Lake Okeechobee Watershed.
Appendix A presents supplemental technical details of the individual basins. Appendix B presents the regression equations that serve as the foundation for the performance measures and performance indicators. Appendix C provides a summary of the flow and water quality stations used in developing the performance measure methodologies.

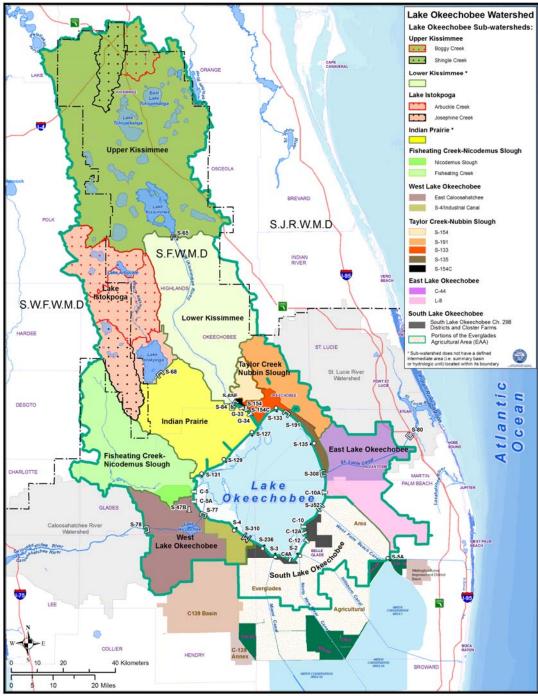

- 395
- 396
- 397
- 398
- 399
- 400
- 401

Figure 2-1. Sub-watershed level map of the Lake Okeechobee Watershed.

lursu\\ad.sfwmd.gov\DFSRoot\err_gis\data\projects\EVG\lok\cRucks_LOK_PerformanceMeasures\LOK_Allsubwatersheds_modified.mxd

Table 2-1. Summary table of basins within the Lake Okeechobee Watershed.

Summary Basin or Hydrologic Unit	Area (acres)	Lake Okeechobee	St. Lucie River	Caloosahatchee River	Everglades Agricultrual
Summary Basin of Hydrologic Unit	Alea (acles)	Watershed	Watershed	Watershed	Area
		, , uceronicu	littershed		
	Upper Ki	ssimmee Sub-wat	ershed		
No Summary Basins	N/A				
Sub-watershed Total	1,028,421	\checkmark			
	Lower Ki	issimmee Sub-wat	ershed		
No Summary Basins	N/A				
Sub-watershed Total	429,188	\checkmark			
	-	Nubbin Slough Su	b-watershed		
S-191	119,402	√ √			
8-133	25,626				
8-135	17,756	√			
8-154 8-154C	31,815 2,134	N V			
S-154C Sub-watershed Total	2,134 196,733	√			
Sub-watersnea 10tai	190,733	V			
	Lako Is	tokpoga Sub-wate	rshed		
No Summary Basins	N/A	lokpoga Sub-wait	isiku		
Sub-watershed Total	394,203	\checkmark			
<i>fub watershea</i> Fora	554,205				
	Indian	Prairie Sub-water	shed		
No Summary Basins	N/A				
Sub-watershed Total	276,577	\checkmark			
	- , -				
	Fisheating Creek-	Nicodemus Sloug	h Sub-watershed		
Fisheating Creek	298,713	√			
Nicodemus Slough	19,329	\checkmark			
Sub-watershed Total	318,042	\checkmark			
	West Lake	Okeechobee Sub-	watershed		
East Caloosahatchee	204,094	\checkmark		\checkmark	
S-4/Industrial Canal	42,145	\checkmark		\checkmark	
Sub-watershed Total	246,240	√		√	
	South Lake (Okeechobee Sub-	watershed ¹		
715 Farms (Culv 12A)	3,302	√			V
East Beach WCD (Culv 10)	6,624				
East Shore WCD (Culv 12)	8,416				
8-2	106,371				\checkmark
8-3	62,946	1			V
South FL Conservancy D (S-236)	11,028				
South Shore/So. Bay DD (Culv 4A)	4,134	\\ ↓			V
S-5A Basin (S-352-WPB Canal)	119,443				V
Sub-watershed Total	322,262	N			
	East Laber	Neesshahaa S-t-	un to un ho d		
2		Okeechobee Sub-			
C-44 ²	132,572	√ 	\checkmark		
L-8 Basin (Culv 10A)	106,440	V			
Sub-watershed Total	239,013	ν	N		

¹ Note: South Lake Okeechobee Areas is based on LOPP boundaries, all other boundaries are based on ArcHydro.

² Note: The area provided in this table for C-44 was obtained from Deliverable 6.1 Collective Source Control Performance Measures for C-23, C-24, C-25/25E, and C-44 Technical Report (dated September 2011; HDR 2011)

³Note: There are some minor differences between the acreages shown in Table 2-1 and the 2011 LOPP. L-61W was removed from the Indian Prairie Sub-watershed and is now included in the Fisheating Creek Summary Basin. Culvert 5Awas moved from the Nicodemus Slough Summary Basin to the East Caloosahatchee Hydrologic Unit. These changes were a result of a review of flow patterns in these areas.

407

Gary Goforth, Inc. February 2013

Appendix D presents the methods used to establish recommended nutrient load reductions
that could be reasonably expected to result from implementation of collective source control
programs. Appendix E provides the details of the algorithm to be used to adjust the
performance measures to account for regional projects. The Excel spreadsheets containing
the specific analyses for the performance measures are included as Attachment 1 to this *Draft Technical Support Document.*

414

415 2.2Authorization and Scope

416 This Draft Technical Support Document: Lake Okeechobee Watershed Performance 417 Measure Methodologies constitutes Deliverable 3.5 of Contract 4600002337 - Performance 418 Measure Methodologies for Collective Source Controls in the Lake Okeechobee and 419 Caloosahatchee River Watersheds - between the District and Gary Goforth, Inc. dated 420 January 31, 2011. The objective of this deliverable is to summarize the technical methods 421 utilized for development of performance measures or performance indicators for the 422 individual basins of the Lake Okeechobee Watershed. The Draft Technical Support 423 Document contains a narrative step-by-step description of the performance measure 424 methodologies, including:

- 425 426
- An explanation of how monitoring results will be evaluated against each basin's performance measures;
- A description of how the performance of the collective source control program within each basin will be assessed, consisting of the steps that will be taken at the completion of each water year to determine if a basin has achieved its performance measure.
- 431
- 432 This document was prepared by Gary Goforth, Inc., in association with L. Hornung433 Consulting, Inc., Soil & Water Engineering Technology, Inc. and staff of the South Florida

Water Management District, and complements work completed by others, including thefollowing.

- 436 1. The performance measure for the East Caloosahatchee Hydrologic Unit, also referred 437 to as the East Caloosahatchee Sub-watershed within the Caloosahatchee River 438 Watershed, was based in part on historical data analyses conducted by HDR 439 Engineering, Inc. as part of Contract No. ST061298 - WO08 (Data Analysis and 440 Performance Measure Development for the St Lucie and the Caloosahatchee River 441 Source Control Programs) with the South Florida Water Management District (HDR 442 2011b). Additional historical data analyses were conducted as part of this work effort 443 to incorporate revised data.
- 2. The historical data analyses and performance measure methodology for the C-44
 Hydrologic Unit, also referred to as the C-44 Sub-watershed of the St. Lucie River
 Watershed, were performed by HDR Engineering, Inc. as part of Contract No.
 ST061298 WO08 (Data Analysis and Performance Measure Development for the St
 Lucie and the Caloosahatchee River Source Control Programs) with the South Florida
 Water Management District (HDR 2011a, HDR 2011c). Additional data analyses
 were conducted as part of this work effort to incorporate revised information.
- 451 3. The performance measure methodology for the Everglades Agricultural Area (EAA)
 452 Basin, which has overlapping boundaries with the South Lake Okeechobee Sub453 watershed, was developed as part of Ch. 40E-63, F.A.C.
- 454 4. The proposed performance measure methodology for the Ch. 298 Districts and
 455 Closter Farms was developed by District staff with assistance from Gary Goforth, Inc.
 456 (Goforth et al. 2011).
- 457

458 2.3 Background

This *Draft Technical Support Document* summarizes the quantitative methods for assessing
the collective performance of the source control programs for the basins within the Lake
Okeechobee Watershed (Figure 1-1). The collective source control programs in place or
being developed include the source control programs identified in Table 2-2.

- 463
- 464

2.3.1 History of Source Controls in the Lake Okeechobee Watershed

466

465

The following section describes over thirty years of federal, state and regional efforts leading
up to the current source control programs in the Lake Okeechobee Watershed. A summary
of the source control implementation time frame for the Lake Okeechobee Watershed is
presented in Table 2-3.

471

472 PROGRAMS THAT BEGAN IN THE 1970s

473

474 Federal Clean Water Act

475 The Federal Clean Water Act was enacted in 1972 and included the National Pollution 476 Discharge Elimination System (NPDES) and Total Maximum Daily Load (TMDL) 477 Programs. The U.S. Environmental Protection Agency (USEPA) delegated responsibility for 478 administration of these programs to the FDEP which until the mid-1990s was known as the 479 Florida Department of Environmental Regulation (FDER). In October 2000, the USEPA 480 authorized the FDEP to implement the NPDES stormwater permitting program in the State of 481 Florida (in all areas except Indian Country lands). The NPDES stormwater program regulates 482 point source discharges of stormwater into surface waters of the State of Florida from certain 483 municipal, industrial and construction activities.

Table 2-2. Nutrient control programs within the Northern Everglades.

Lead Agency	Program ¹	Non- Point Source	Point Source
	Works of the District BMP Program ² - Chapter 40E-61, F.A.C.	\checkmark	
South Florida Water Management District	Environmental Resource Permitting Program - Chapter 373, F.S. Part IV	\checkmark	
(SFWMD)	Dairy remediation projects ^{3,5}		\checkmark
	Dairy Best Available Technologies Project ^{3,5}		\checkmark
Florida Department of	Agricultural BMP Program - Chapter 5M-3, F.A.C.	\checkmark	
Agriculture and Consumer Services	Animal Manure Application - Chapter 5M-3, F.A.C.	\checkmark	
(FDACS)	Urban Turf Fertilizer Rule - Chapter 5E-1, F.A.C.	\checkmark	
	Dairy Rule/Confined Animal Feeding Operation (CAFO) - Chapter 62-670, F.A.C.		V
	Environmental Resource Permitting Program - Chapter 373, F.S. Part IV ⁵	\checkmark	
Florida Department of	Stormwater Infrastructure Updates and Master Planning - Chapter 187, F.S. ⁵	\checkmark	
Environmental Protection (FDEP)	Municipal Separate Storm Sewer System Permit Program - Chapter 62-624, F.A.C.		\checkmark
	Comprehensive Planning – Land Development Regulations - Chapter 163, F.S. Part II^5	\checkmark	
	Biosolids Rule - Chapter 62-640, F.A.C.	\checkmark	
Florida Department of Health	Application of Septage - Section 373.4595, F.S.	\checkmark	
(FDOH)			
University of Florida Institute of Food and Agricultural Sciences ⁴ (UF/IFAS)	Florida-Friendly Landscaping Program - Section 373.185, F.S.	\checkmark	

¹Applicable to all three watersheds except where noted in the other footnotes below.

²The rule currently applies to the Lake Okeechobee Watershed. However, as directed by the NEEPP, the rule will be amended to include the adjacent river watersheds.

³Applicable to only the Lake Okeechobee Watershed.

⁴Partially funded by FDEP.

⁵No reductions considered.

Table 2-3. Summary of the source control implementation time frame for the Lake Okeechobee Watershed.

Timeframe	Event
1970s	FDER Dairy regulatory programs begin
1072	Clean Water Act and Florida Water Resources Act
1972	South Florida Water Management District Stormwater Permitting Begins
1978	Florida Established Non-Point Source Management Programs
1981	Rural Clean Water Program Taylor Creek Headwaters
1984	FDER Biosolids/Domestic Wastewater Residuals Regulations
1985	Florida State stormwater rule adopted, retention ponds became required for new development
1986	New citrus groves were required to include onsite reservoirs for stormwater runoff.
1987	Surface Water Improvement and Management Act for Lake Okeechobee enacted
1987	FDER Dairy Rule for Lake Okeechobee Basin
1989	Chapter 40E-61, the Lake Okeechobee Works of the District Rule adopted by SFWMD
1990	National Pollutant Discharge Elimination System Programs
1992	Chapter 40E-63, the Everglades Agricultural Area Works of the District Rule adopted by SFWMD
1995	SFWMD Environmental Resource Permitting Regulatory Program adopted
1995	Kissimmee River Restoration Project
1999	Florida Watershed Restoration Act
2000	The Lake Okeechobee SWIM Act is revised to become the Lake Okeechobee Protection Act
2003	FDOH Septage Application requires Agricultural Use Plan
2003	FDACS adopts Rule 5M-3, the BMP rule for the priority basins S-191, S-154, S-65 D and S-65E.
2003	FDACS Land Application of Animal Wastes (Rule 5M-3)
2004	FDOH Wastewater Master Plans
2005	The geographic area of the Lake Okeechobee Protection Act is expanded to include the Upper Kissimmee and the Lake Istokpoga Sub-watersheds.
2006	FDACS expands BMP rule 5M-3 to the entire Lake Okeechobee Watershed
2007	The LOPA is revised to become the Northern Everglades and Estuaries Protection Program
2007	FDACS Urban Turf Fertilization Rule (Rule 5E-1.003)
2011	FDACS amends BMP Rule 5M-3 to the entire Northern Everglades
Beyond	Elimination of land application of biosolids
2012	Proposed FDEP Numeric Nutrient Criteria

494 495

496

In response to assessments and research from the Area-wide Water Quality Planning Program performed under Section 208 of the Clean Water Act, Florida began implementing programs to minimize nonpoint sources of pollution in the late 1970s. In 1987, the Clean Water Act was amended to add Section 319 which required states to develop nonpoint source management programs. Florida began full implementation of its revised nonpoint source management program in 1989 following submission, review, and approval by USEPA (FDEP 1999).

505

506 Florida Dairy Programs

507 In the Lake Okeechobee Watershed, the dairy lagoon regulatory program was implemented 508 by the Federal Soil and Water Conservation Service (which is now the Natural Resource 509 Conservation Service) in the 1970s and required wastewater retention onsite. In 1987, this 510 program was followed by the FDEP dairy rule (Rule 17-6.330) which required specific 511 BMPs for dairies in the Lake Okeechobee Drainage Basin, which at the time consisted of the 512 Lower Kissimmee, Taylor Creek-Nubbin Slough, Fisheating Creek-Nicodemus Slough, 513 Indian Prairie and South Lake Okeechobee Sub-watersheds. During this time there was also 514 a dairy buyout program which was a voluntary program where the state purchased a deed 515 restriction on dairy properties which decided to close instead of implementing the BMPs 516 required under Rule 17-6.330. The deed restriction prevents these properties from being 517 used as a dairy operation.

518

519 In 1996, Rule 17-6.330 was superseded by Rule 62-670, the Feedlot and Dairy Wastewater 520 Treatment and Management program, which required dairies with over 700 cows to apply for 521 an Industrial Waste permit and a concentrated animal feeding operation (CAFO) permit by 522 1989 for discharge of pollutants. Rule 62-670 had additional requirements for dairies 523 operating in the Lake Okeechobee Drainage Basin which was defined as it had been under 524 Rule 17-6.330.

526 USEPA finalized the CAFO Rule in 2003 under the Clean Water Act which required all large 527 animal feed operations to obtain permits. In Florida, FDEP administers the permitting 528 program. Large CAFOs (dairies with more than 700 cows) are required to develop and 529 implement nutrient management plans that ensure manure is properly managed in ways that 530 assure utilization by crops and reduce pollution. Dairies were required to convert from their 531 prior Industrial Waste permits to NPDES permits.

532

533 PROGRAMS THAT BEGAN IN THE 1980s

534

535 Florida Stormwater Rule

536 In 1981, the statewide Florida stormwater rule was adopted by the Environmental Regulation 537 Commission with an effective date of February 1982. This rule required a permit for new 538 stormwater discharges for the purpose of protecting the designated use of the receiving water. 539 Any new stormwater management system that discharged to waters of the state was required to obtain a permit under this rule. FDEP immediately delegated the authority for 540 541 administering this rule to the water management districts (except the Northwest Florida 542 Water Management District). Permits required that post development flow rates, flow 543 volumes, and nutrient loads be equal to, or less than pre-development levels.

544

The Lake Okeechobee Operating Permit (LOOP) was issued to SFWMD by FDEP in 1983.
The LOOP required the management of water in the Everglades Agricultural Area (EAA) in
the South Lake Okeechobee Sub-watershed for nutrient reduction and flood protection
purposes.

549

550 Federal Rural Clean Water Program

551 In the 1980s the Rural Clean Water Program provided financial and technical assistance to 552 private landowners and operators having control of rural land. The assistance was provided 553 through long-term contracts to install best management practices in project areas which had

554 critical water quality problems resulting from agricultural activities. In 1981, there were 555 63,109 acres included in the Rural Clean Water Program within fourteen projects in the 556 Taylor Creek-Nubbin Slough Sub-watershed, including dairy farms, beef cattle pastures that 557 were extensively ditched for improved surface drainage, and areas within one-quarter of a 558 mile from a waterway. BMPs which excluded dairy cows and beef cattle from waterways 559 and to control wastewater runoff from dairy barns were installed. In 1988 the program was 560 expanded to include dairies in the Lower Kissimmee Sub-watershed.

561

562 Florida Biosolids/Domestic Wastewater Residuals Regulations

The regulation of domestic wastewater residuals (now referred to as biosolids) began in 1984 and was originally adopted under solid waste regulations (Chapter 17-7). Regulations were adopted under Chapter 62-640, F.A.C. (water regulations) in 1991 and revised in 1998. The latest rule revision, adopted on August 28, 2010, intends to: improve land application site management and accountability, address critical nutrient issues in Florida, address continuing and heightened public concerns and county interest, and support public confidence in the beneficial use of biosolids.

570

571 The revised rule prohibits the application of Class B biosolids in the Lake Okeechobee 572 Watershed after December 31, 2012, unless the applicant completes a nutrient balance 573 demonstration which is FDEP approved. This prohibition does not apply to Class AA 574 biosolids that are marketed and distributed as fertilizer products in accordance with Rule 62-575 640.850, F.A.C. This could impact the extent of land application of residuals in the 576 watershed and the nutrient loading to Lake Okeechobee. Biosolids provide a low cost 577 agricultural fertilizer. If land application is prohibited, fertilization may be reduced due to 578 economic factors.

- 579
- 580
- 581

582 SFWMD Management and Storage of Surface Waters Program

In 1986, SFWMD amended Rule 40E-4 requiring new applicants to meet specific detention
and retention criteria. As a result, new citrus groves were required to include detention
reservoirs in their surface water management plans.

586

In 1995, the management and storage of surface waters permitting program merged with the wetland resource permitting program from Chapter 403, F.S. to form the Environmental Resource Permit Program. The ERP program requires that new activities or modification of existing activities provide reasonable assurances that they will not cause adverse water quality such that state water quality standards will not be violated, cause adverse flooding or water quantity impacts, or harm wetland of other surface water systems.

593

594 Florida Surface Water Improvement and Management Program (Section 373.451, F.S.) 595 In 1987, the State of Florida enacted the Surface Water Improvement and Management 596 (SWIM) Act. This Act required the water management districts to develop and implement 597 plans for restoring and protecting degraded water bodies in the state. The Lake Okeechobee 598 SWIM Plan was prepared by the SFWMD in 1989 and the TP load target for Lake 599 Okeechobee at that time was 360 metric tons. The SWIM Plan was subsequently updated in 600 1993, 1997, and 2002. The SWIM Plan has led to implementation of many initiatives that 601 have been directed at improving the quality of water discharged to Lake Okeechobee. 602 Information about projects initiated as a part of the SWIM program can be found in the 1989, 603 1993, 1997 and 2002 SWIM Plan Reports (SFWMD 1989, SFWMD 1993, SFWMD 1997, 604 SFWMD 2002).

605

606 SFWMD Works of the District Rule 40E-61, F.A.C.

In 1989, the District adopted Rule 40E-61 regulating phosphorus surface water discharges
from certain land uses in the Lake Okeechobee Watershed. At that time, the program
included the Lower Kissimmee, Indian Prairie, Fisheating Creek-Nicodemus Slough, South

610 Lake Okeechobee, East Lake Okeechobee, West Lake Okeechobee, and Taylor 611 Creek/Nubbin Slough Sub-watersheds (see Figure 2-2). Approximately 800 permits were 612 issued on parcels of land five (5) acres and greater for the following land uses: improved 613 pasture, heifer farms, vegetable farms, hog farms, poultry farms, goat farms, urban 614 stormwater, golf courses, sugar cane, horse farms, nurseries, land spreading of sludge 615 (biosolids), and sod farms. At the time the rule became effective, the assumption was that 616 landowners were in compliance until their monitoring data indicated otherwise. The permits 617 set a concentration based discharge limit based on the load reductions set forth under the 618 SWIM plan. The Lake Okeechobee Works of the District (LOWOD) permits required a 619 simple statement from permit holders on how they planned to control phosphorus. The 620 majority of the permits included statements such as "I will use low phosphorus fertilizer". 621 Farm-level grab sample monitoring was required and was funded by the SFWMD. 622 Monitoring funds were limited and the number of landowners required to implement 623 additional BMPs for not meeting the TP concentration limit was relatively few. Performance 624 was measured at the parcel level and it has been difficult to determine the overall program 625 performance in reducing phosphorus loading.

626

629 630

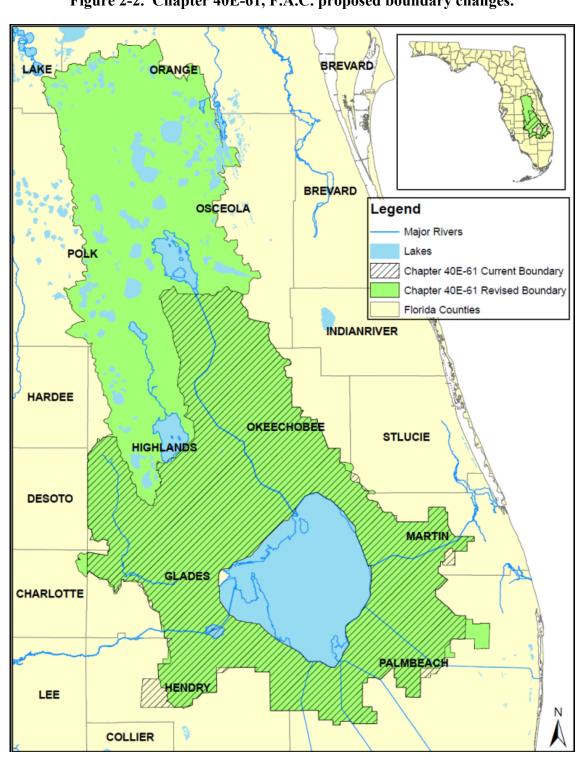


Figure 2-2. Chapter 40E-61, F.A.C. proposed boundary changes.

632 PROGRAMS THAT BEGAN IN THE 1990s

633

634 Federal National Pollutant Discharge Elimination System Programs

635 The USEPA developed the NPDES stormwater permitting program in two phases. Phase I, 636 promulgated in 1990, addresses "large" and "medium" municipal separate storm sewer 637 systems (MS4s) located in incorporated places and counties with populations of 100,000 or 638 more, and eleven categories of industrial activity, one of which is large construction activity 639 that disturbs five or more acres of land. Phase II, promulgated in 1999, addresses additional 640 sources, including MS4s not regulated under Phase I, and small construction activity 641 disturbing between one and five acres. FDEP's authority to administer the NPDES program is 642 set forth in Section 403.0885, Florida Statutes (F.S.). As the NPDES stormwater permitting 643 authority, FDEP is responsible for promulgating rules and issuing permits, managing and 644 reviewing permit applications, and performing compliance and enforcement activities.

645

646 Federal Kissimmee River Restoration Project

647 The Kissimmee River Restoration and the Kissimmee River Headwaters Revitalization 648 Projects were jointly authorized in the 1992 Water Resources Development Act. The 649 primary goal of the Kissimmee River Restoration Project is to reestablish the ecological 650 integrity of the river-floodplain system, which is defined as, "the capability of supporting and 651 maintaining a balanced, integrated, adaptive community having species composition, 652 diversity, and functional organization comparable to that of natural habitat of the region" 653 (Karr and Dudley, 1981). Restoration of ecological integrity requires reconstruction of the 654 physical form of the river (i.e., canal backfilling, removal of water control structures, and 655 elimination of secondary drainage ditches, levees, and roads) and reestablishment of 656 historical (pre-channelization) hydrologic (i.e., discharge and stage) characteristics.

657

658 Successful completion of the Kissimmee River Restoration Project and associated projects659 has critical implications for other ecosystem restoration projects in South Florida. For

- example, the restoration project should increase phosphorus retention within the Kissimmee
 River system through restoration of floodplain wetlands, thus removing a portion of
 phosphorus loads that would otherwise reach Lake Okeechobee.
- 663

664 SFWMD Everglades Works of the District Rule 40E-63, F.A.C.

- 665 The 1994 Everglades Forever Act defined that Stormwater Treatment Areas and BMP 666 implementation for the Everglades Construction Project basins are the best available 667 technology for achieving interim phosphorus water quality goals for the Everglades 668 Protection Area. In order to carry out these activities, the Everglades Forever Act mandated 669 the creation of an Everglades Program, including a regulatory component to oversee 670 implementation of BMPs. The District promulgated Chapter 40E-63, F.A.C., which details 671 the scope of the Everglades Regulatory Program for the Everglades Agricultural Area (a 672 portion of which is located in the South Lake Okeechobee Sub-watershed) and the C-139 673 basins. In this rule, the District describes the implementation procedures and compliance 674 measures for the BMP program mandated in the Everglades Forever Act including (1) 675 enforcing implementation of BMPs, (2) conducting a water quality monitoring program to 676 evaluate the effectiveness of BMPs, (3) tracking area-wide phosphorus loads, and (4) 677 developing a mandatory BMP research program for phosphorus and other water quality 678 parameters of concern.
- 679

680 SFWMD Environmental Resource Permit program

- In the mid-1990s, the State of Florida's Environmental Reorganization Act provided the
 water management districts independent authority under Chapter 373, F.S., to regulate
 stormwater quality under the Environmental Resource Permit program.
- 684

685 Florida Watershed Restoration Act

686 The Florida Watershed Restoration Act of 1999 established and implemented TMDLs and687 encouraged the implementation of agricultural BMPs. In response to the Act, the Cow/Calf

BMP Manual was developed and adopted in 1999, updated in 2007, and followed by
development of BMP manuals for other land uses. The BMP manuals were developed by a
collaboration of multiple organizations and representatives of Federal, State, and local
governments.

692

693 PROGRAMS THAT BEGAN IN THE 2000s

694

695 Florida Lake Okeechobee Protection Act/Northern Everglades and Estuaries Protection696 Program

697 In 2000, the Florida legislature revised the Lake Okeechobee SWIM statute and it became 698 the Lake Okeechobee Protection Act (LOPA) (Section 373.4595, F.S.) The LOPA required 699 the Coordinating Agencies (SFWMD, FDEP, and FDACS) to collaborate in the preparation 700 and implementation of a Lake Okeechobee Protection Plan (LOPP). The LOPP provided a 701 road-map for a comprehensive program that was directed at meeting the Lake Okeechobee 702 TP TMDL. The TMDL was under development at the time the Act was passed, but was 703 finalized in 2000 prior to completion of the LOPP which was developed in 2004 and updated 704 in 2007 and 2011. The LOPP required implementation of a two-phase Lake Okeechobee 705 Construction Project, implementation of urban and agricultural source control measures, and 706 a research and monitoring program. Subsequent renewals of the Lake Okeechobee Operating 707 Permit incorporated specific conditions to assess the achievement with the lake TMDL.

708

In 2005, LOPA was revised further and the Upper Kissimmee and Lake Istokpoga Subwatersheds were included in the Lake Okeechobee Watershed boundary. The 2005 revisions to LOPA directed that phosphorus load reductions be achieved through a phased program of implementing long-term solutions based on the Lake Okeechobee TMDL of 140 metric tons for TP (105 metric tons from contributing sub-watersheds and 35 from atmospheric deposition).

716 In 2007, LOPA was subsumed by Northern Everglades and Estuaries Protection Program 717 (NEEPP), which further refined the responsibilities of the coordinating agencies to achieve 718 TP reduction objectives faster. The objectives included (1) continued implementation of 719 existing regulations and incentive-based BMPs, (2) development and implementation of 720 improved BMPs, (3) improvement and restoration of hydrologic function of natural and 721 managed systems, and (4) use of alternative technologies for nutrient reduction. In addition, 722 changes were identified for Chapter 40E-61, F.A.C. to incorporate NEEPP mandates that 723 modify the boundary of the program through the inclusion of the Upper Kissimmee Sub-724 watershed, Lake Istokpoga Sub-watershed, Caloosahatchee River Watershed, and St. Lucie 725 River Watershed; see Figure 2-2 for proposed revisions to the boundary of 40E-61.

726

727 Florida Agricultural BMP Program

728 In response to the LOPA's requirements, the FDACS, in collaboration with the USDA's 729 National Resource Conservation Service and the University of Florida's Institute of Food and 730 Agricultural Sciences (UF/IFAS), initiated an agricultural BMP program throughout the state 731 including the Lake Okeechobee Watershed. The program provides technical assistance for 732 the development of appropriate management plans and financial assistance for 733 implementation. According to the NEEPP, agricultural land owners that do not implement 734 BMPs are required to implement a monitoring program to demonstrate that the water quality 735 objectives of the District's Lake Okeechobee Works of the District program (Chapter 40E-736 61) are met.

737

In 2003, FDACS adopted the Rule 5M-3 requiring BMPs for the Lake Okeechobee priority
basins S-191, S-154, S-65 D and E. In 2006, this rule was expanded to the entire Lake
Okeechobee Watershed. In 2011, FDACS amended the BMP Rule 5M-3 to include the
entire Northern Everglades (including the St. Lucie and Caloosahatchee Watersheds). The
FDACS develops and adopts BMPs by rule for different types of agricultural operations.

- 743 Most of the BMPs are outlined in commodity-specific manuals, which can be found at
 744 <u>http://www.floridaagwaterpolicy.com/.</u>
- 745

746 FDACS Rules

747 In 2003, FDACS adopted the Land Application of Animal Wastes Rule which was included 748 as part of Rule 5M-3. It specified areas (i.e. wetlands and water setbacks) in which animal 749 manure cannot be applied and required soil and/or plant tissue tests to determine a 750 phosphorus-based application rate. For applications in excess of one ton per year, a nutrient 751 management plan is required.

752

In 2007, the FDACS adopted the Urban Turf Fertilization Rule (Rule 5E-1.003) requiring specific labeling on commercial fertilizers. Products labeled for use on sports turf, urban turf or lawns shall contain no phosphate or low phosphate, and if they are low in phosphate must include specific application directions. Products labeled for sports turf at golf courses, parks and athletic fields shall include directions to follow the procedures described in "BMPs for the Enhancement of Environmental Quality on Florida Golf Courses," published by the FDEP in January 2007.

760

761 Florida Department of Health Septage Application

In 2003, the Florida Department of Health initiated a requirement that septage applied in the Lake Okeechobee Watershed include an agricultural use plan to limit application based on phosphorus. Based on soil testing and the UF/IFAS Standardized Fertilization Recommendations for Agronomic Crops phosphorus demand, the appropriate application rate is determined. By 2005, the phosphorus concentrations originating from these sites were required by the NEEPP to be below the limits established in the SFWMD's LOWOD program.

- 769
- 770

771 BEYOND 2011

772

The 2011 Lake Okeechobee Protection Plan (LOPP) update provides detailed information on near term and long term activities. These activities include such items as continued implementation of BMP programs, dispersed water management projects, wetland projects, aquifer storage and recovery, parcel level chemical treatment, and the development of stormwater treatment areas and reservoirs. More information about specific projects and programs can be found in the LOPP and subsequent updates.

779

780 2.4 Regulatory Framework

781

The SFWMD's regulatory source control program began in the Lake Okeechobee Watershed
with the SWIM Plan, which was required by the 1987 SWIM legislation (Chapter 373.4595,
Florida Statutes (F.S.)). The history of this program and the changes to the legislation which
mandated the program was discussed above in Section 2.3.1.

786

787 After these legislative changes, the SFWMD began the process of revising LOWOD 788 regulatory source control program rule to be compatible with current initiatives. The goal is 789 to have a regulatory source control program that is an ongoing program of BMPs 790 implemented through the issuance of permits for agricultural and non-agricultural land uses 791 (new and existing). The rule will be a comprehensive program of BMP plan approval, 792 verification of implementation through field visits, and data evaluation; and be 793 complementary to the FDACS and FDEP state-wide source control programs. The SFWMD 794 will develop a performance metric for the collective source control programs. Performance 795 measures ensure consistent implementation of BMPs, measure actual phosphorus reductions, 796 and allow for the detection of water quality problems so that BMPs can be re-evaluated if 797 necessary.

This *Draft Technical Support Document* describes the methodologies for initial proposed performance measures that, once finalized, will be used to determine whether the collective source control programs for the Lake Okeechobee Watershed are meeting the objectives of the NEEPP. This approach requires annual calculation of the TP load leaving the outfall structures from each basin.

Because of the critical importance of the Kissimmee-Lake Okeechobee-Everglades
ecosystem, many programs work in concert to protect the water resources of the region as a
whole. For basins which discharge to more than one watershed, this *Draft Technical Support Document* describes the relationships between the source control programs in those areas.

807 2.4.1 Total Maximum Daily Loads

Source controls are one of several restoration tools used to support the achievement of the
Lake Okeechobee TMDL for TP of 140 metric tons per year (mt/yr), as defined in Chapter
62-304.700, F.A.C.²

The FDEP issued an operating permit to the District that contains TP discharge limits for the
structures discharging into Lake Okeechobee (Lake Okeechobee Operating Permit (LOOP);
FDEP 2007). The LOOP requires the District to conduct annual evaluations to determine
progress towards achieving the TMDL and associated "regional target phosphorus loads".
The "regional target phosphorus loads" established by the LOOP are 5-yr average annual TP
loads for the structures discharging into Lake Okeechobee, grouped into four regions (Table
2-4).

² For the purposes of this document only the adopted state Lake Okeechobee TMDL was considered.

819Table 2-4. FDEP Lake Okeechobee Operating Permit regional grouping (modified820from FDEP 2007 to show regional TP load targets).

WATERSHED	STRUCTURES					
Northern Region 5-year moving average annual (MA) load = 78.59 mtons	S-65E, S-71, S-72, S-84, S-127, S-129, S-131, S-133, S-135, S-154C, S-154, S-191, CU-5, C- 38W/CULVERT A/G-33, G-207, G-208, L-59E/G-34, L-59W/G-74, L-60E/G-75, L-60W/G-76, L-61E, HP-7, Inflow 1, Inflow2, Inflow 3, Fisheating Creek/FECSR78 ²					
Southern Region 5-year moving average annual (MA) load = 9.56 mtons	S-2, S-3, S-4, S-354, Industrial Canal, S-352, S-236, Culvert 12 ³ , Culvert 4A ³ , Culvert 10 ³ , Culvert 12A ³ , S- 351					
Eastern Region 5-year MA load = 16.84 metric tons	CU-10A, S308 ²					
Western Region 5-year MA load = 0.01 metric tons	S-77 ² , CU-5A ²					

¹This table contains structures which contribute flows and loads to Lake Okeechobee. The structures have been grouped into 4 regions and a target load has been calculated for each region. For purposes of calculations associated with the target load, data from all of the structures identified in the region should be utilized.

²Identifies structures that are monitored through this permit.

³ Identifies structures which are authorized through a separate permit but are included in the target load calculation for a particular region.

The relationship between the TMDL regulatory framework defined in the LOOP and the performance measure methodologies contained in this document can be described by identifying the similarities and dissimilarities. While the contrasts vary among the subwatersheds, a general description is provided below. Basin-specific contrasts are clarified in the subsequent section.

827

821

Similarities. A common feature between most of the approaches described herein and the TMDL regulatory framework defined in the LOOP is the requirement for an <u>annual</u> assessment of TP loads. For the performance methodologies, the exceptions are when adequate historical data were not available for development of a load-based performance measure, and in some cases a load-based performance indicator was derived. Another common feature between the approaches described herein and the LOOP is the use of the Water Year (May to April) as the averaging interval for reporting nutrient loads.



836 General Contrasts. General differences between the TMDL regulatory framework defined
837 in the LOOP and the proposed Lake Okeechobee Watershed (LOW) performance measure
838 methodologies are described below.

839 1. Achievement of the Lake Okeechobee TMDL.

LOOP. The load targets within the LOOP are designed to achieve the Lake TMDL
based on load reductions resulting from all initiatives described in the LOPP,
including source control and regional projects (SFWMD 2011a). Collectively, source
control measures and regional projects described in the LOPP are intended to work in
concert to meet the applicable TMDL and other water quality objectives (see Figure
2-3).

846Figure 2-3. Conceptual diagram of collective source control and regional projects' TP847load reductions to achieve water quality objectives.

850 LOW Performance Measure Methodology. The performance measure 851 methodologies described herein only consider source controls which do not by 852 themselves achieve the TMDL for Lake Okeechobee. The goal for the collective TP 853 source control programs in the Lake Okeechobee Watershed will be based on TP load 854 reductions that can reasonably be expected to be achieved through full 855 implementation of BMPs.

856

857 2. Location of monitoring stations.

858 LOOP. In the LOOP, 40 structures that discharge into Lake Okeechobee are grouped859 into four regions (Table 2-4), and each region has a target phosphorus load.

LOW Performance Measure Methodology. The Lake Okeechobee Watershed is divided into sub-watersheds, summary basins and hydrologic units to represent discharge from a defined area. These do not always correspond to the four regions of the LOOP, and hence, the regional target phosphorus loads of the LOOP cannot always be compared directly to the grouping of structures used in the Lake Okeechobee Watershed performance measures. A complete cross reference of the LOOP structures is presented in Table 2-5.

3. The receiving body or bodies and location of the monitoring stations used for theannual assessment.

LOOP. In the LOOP, the TP load target is assessed against the observed loads from permitted structures that discharge into Lake Okeechobee, e.g. S-77 of the East Caloosahatchee Hydrologic Unit.

872 LOW Performance Measure Methodology. The performance measures and873 performance indicators described herein establish annual TP targets for the basin

874	runoff regardless of discharge direction. In other words, the performance measure
875	evaluates the source control program regardless of where the runoff discharges to.
876	For example, the methodology for the East Caloosahatchee Hydrologic Unit includes
877	TP loads at S-77 (which discharges into Lake Okeechobee) combined with TP loads
878	at S-78 (which discharges into the Caloosahatchee River). A comparison of the
879	receiving waters considered in the LOOP and those considered in the performance
880	methodologies described herein is presented in Table 2-6.

Table 2-5. Cross-reference of LOOP and Lake Okeechobee Watershed structures. 881

882

		Lake Okeechobee	Summary Basin				
LOOP Region	Structures	Watershed	or				
		Sub-watershed	Hydrologic Unit				
	S-133		S-133 Summary Basin				
	S-135	Taylor Creek/Nubbin Slough	S-135 Summary Basin				
	S-154	Sub-watershed	S-154 Summary Basin				
	S-154C	Sub-watershed	S-154C Summary Basin				
	S-191		S-191 Summary Basin				
	S-65E	Lower Kissimmee Sub-watershed	& Upper Kissimmee Sub-watershed				
	S-71, S-72, S-84, S-127, S-129, S-131, C-38W/Culvert						
	A/G-33, L-59E/G-34, L-59W/G-74, L-60E/G-75, L-	Lake Istokpoga and Indi	ian Prairie Sub-watersheds				
Northern Region	60W/G-76, L-61E						
	Fisheating Creek/FECSR78	Fisheating Creek / Nicodemus Slough	Fisheating Creek Summary Basin				
	Culvert 5	Sub-watershed	Nicodemus Slough Summary Basin				
	HP-7						
	Inflow 1	Not included (Note 1)					
	Inflow 2	Not includ					
	Inflow 3						
	G-207	Not included (Note 2)					
	G-208	Not ileidd	or Hydrologic Unit S-133 Summary Basin S-135 Summary Basin S-135 Summary Basin S-154 Summary Basin S-154C Summary Basin S-191 Summary Basin ed & Upper Kissimmee Sub-watershed adian Prairie Sub-watersheds h Fisheating Creek Summary Basin Nicodemus Slough Summary Basin uded (Note 1) uded (Note 2) EAA Basin (40E-61) Ch. 298 Districts S-4 / Industrial Canal Hydrologic Unit East Cabosahatchee Hydrologic Unit East Cabosahatchee Hydrologic Unit C.44 Summary Basin				
	S-2, S-3, S-351, S-352, S-354	South Lake Okeechobee Sub-	EAA Basin (40E-61)				
Southern Region	Culvert 4A, Culvert 10, Culvert 12, Culvert 12A, S-236	watershed	Ch. 298 Districts				
	S-4, Industrial Canal (S-310)	West Lake Okeechobee Sub-	S-4 / Industrial Canal Hydrologic Unit				
Western Region	S-77	watershed	East Caloosahatchee Hydrologic Unit				
western Region	Culvert 5A	watershed	East Caloosahatchee Hydrologic Unit				
Eastern Region	S-308	East Lake Okeechobee Sub-watershed	C-44 Summary Basin				
Lasterii Region	Culvert 10A	Last Lake Okceenbbee Sub-watershed	L-8 Summary Basin				

Notes:

1. Excluded from the LOW performance measure due to insufficient data

2. Excluded from the LOW performance measure since these structures convey water supply inflow to the sub-watershed, and the conveyed TP loads are subtracted out as flow through

888

Table 2-6. Comparison of LOOP and Lake Okeechobee Watershed receiving waters and consideration of pass-through loads.

	and con	siuci ation (bi pass-till ough loads.						
	Summary Basin	LOOP	Basin	Pass -					
Sub-watershed	or	Receiving	Receiving Waters						
	Hydrologic Unit	Water							
Taylor Creek/Nubbin Slough	S-133	Lake Okeechobee	Lake Okeechobee	No					
Taylor Creek/Nubbin Slough	S-135	Lake Okeechobee	Lake Okeechobee	No					
Taylor Creek/Nubbin Slough	S-154	Lake Okeechobee	Lake Okeechobee	No					
Taylor Creek/Nubbin Slough	S-154C	Lake Okeechobee	Lake Okeechobee	No					
Taylor Creek/Nubbin Slough	S-191	Lake Okeechobee	Lake Okeechobee	No					
Lower Kissimmee Sub-w	atershed	Lake Okeechobee	Lake Okeechobee	Yes					
East Lake Okeechobee	C-44	Lake Okeechobee	Lake O, St Lucie River and Estuary	Yes					
East Lake Okeechobee	L-8	Lake Okeechobee	Lake O, EAA, C-51W, STA-1 Inflow Works, City of West Palm Beach Catchment Area						
Indian Prairie Sub-wat	ershed	Lake Okeechobee	Lake Okeechobee	Yes					
Fisheating Creek/Nicodemus Slough	Fisheating Creek	Lake Okeechobee	Lake Okeechobee	No					
Fisheating Creek/Nicodemus Slough	Nicodemus Slough	Lake Okeechobee	Lake Okeechobee	No					
Lake Istokpoga Sub-watershed		Lake Okeechobee	Lake Okeechobee	No					
Upper Kissimmee Sub-w	atershed	Lake Okeechobee	Lake Okeechobee						
West Lake Okeechobee	S-4 / Industrial Canal	Lake Okeechobee	Lake Okeechobee, East Caloosahatchee Hydrologic Unit	Yes					
West Lake Okeechobee	East Caloosahatchee	Lake Okeechobee	Lake Okeechobee, S-4 / Industrial Canal Hydrologic Unit, Caloosahatchee River	Yes					
South Lake Okeechobee	EAA Basin (40E-63)	Lake Okeechobee	Lake Okeechobee, L-8 Canal, STAs, Everglades Protection Area	Yes					
South Lake Okeechobee	Ch 298 Districts	Lake Okeechobee	Lake Okeechobee	No					

894

895 4. Treatment of pass-through loads.

LOOP. The LOOP target loads are based on total TP loads discharged into Lake
Okeechobee from the permitted structures. As such, there is no differentiation
between basin runoff loads, and those loads that pass through the basin from upstream
sources.

LOW Performance Measure Methodology. In contrast, the proposed approach
 presented herein differentiates between basin runoff loads, and those loads that pass
 through the basin from upstream sources. For example, S-65E of the Lower
 Kissimmee Sub-watershed discharges a combination of basin stormwater runoff and
 deliveries to Lake Okeechobee from sources outside the summary basin, e.g., the
 Upper Kissimmee Sub-watershed. These pass-through loads are outside the control
 of the collective source control programs within the basin and in some cases are

907 covered under source control programs of the upstream basin. Specific calculations
908 are included to separate the pass-through loads such that only basin runoff loads are
909 compared against the performance measure for the summary basin. The basins that
910 account for pass-through loads are presented in Table 2-6.

911

5. Different evaluation periods.

912 LOOP. In the LOOP, progress towards attainment of the TMDL is based on a five913 year moving average of TP loads measured at the permitted structures that discharge
914 into Lake Okeechobee.

915 LOW Performance Measure Methodology. In contrast, the proposed performance
 916 measures presented herein are based on annual TP loads, with hydrologic variability
 917 explicitly addressed through the use of a regression equation that incorporates rainfall
 918 characteristics and a two-part (Target/Limit) methodology³.

- 919
 i. One part of the methodology, the Annual Load Target, evaluates
 920
 921
 921
 922
 922
 923
 923
 924
 925
 925
 926
 927
 928
 928
 929
 929
 929
 920
 920
 920
 921
 921
 922
 923
 923
 923
 924
 925
 925
 925
 926
 927
 927
 928
 928
 929
 929
 929
 920
 920
 920
 921
 921
 923
 923
 923
 924
 925
 925
 925
 926
 927
 927
 928
 928
 929
 929
 929
 929
 929
 920
 920
 921
 921
 923
 923
 923
 924
 925
 925
 925
 926
 926
 927
 927
 928
 929
 929
 929
 929
 929
 929
 920
 920
 921
 921
 921
 923
 923
 923
 924
 925
 925
 925
 926
 927
 928
 929
 929
 929
 929
 929
 929
 929
 929
 929
 929
 920
 920
 920
 921
 921
 923
 923
 923
 924
 925
 925
 925
 926
 927
 928
 929
 929
 929
 929
 929
 929
 929
 929
 929
 929
 929
 929
 929
 929
 929
 929
 929
 929
 929
 929
 929
 929
 929
 929
 929
 929
 929
 929
 <li
- 924 ii. The second part of the methodology, the Annual Load Limit, evaluates
 925 whether a basin's runoff loads are below or above the upper 90 percent
 926 confidence limit on the predicted Annual Load Target. A single year's
 927 result determines performance relative to the Limit.
 - 6. Different Base Periods for Derivation of Targets.
- 929

 $^{^{3}}$ In those basins where insufficient data precluded establishment of a performance measure, an annual performance indicator was established. The characteristics of the performance indicators are described in Sections 3.6 and 3.8.

930	LOOP. For the TMDL, the target loads were estimated from models using flows for
931	the 27-year period of record from 1973 through 1999.

933 LOW Performance Measure Methodology. The performance measure
934 methodologies described in this document used measured flow and water quality data
935 for basin-specific base periods, ranging from eight years to fourteen years in duration,
936 that were selected based on criteria described in Section 1.2.

938

937

932

7. Consideration of hydrologic variability.

939

946

940 LOOP. The LOOP targets are static and are not adjusted for hydrologic variability.
941 However, the derivation and application of the LOOP targets attempted to account for
942 hydrologic variability in two aspects:

- 943 i. The targets were derived from a long-term (27 years) period of flows944 that occurred during a wide range of meteorological conditions, and
- 945
- ii. The targets are assessed against 5-year moving average TP loads.

947 LOW Performance Measure Methodology. The performance measure
948 methodologies described herein explicitly account for hydrologic variability through
949 the use of one or more annual rainfall characteristics to derive the Annual Load
950 Targets and Annual Load Limits.

951 Basin-specific contrasts are highlighted below.

Lower Kissimmee Sub-watershed. For the purpose of the Lake Okeechobee
 Watershed performance measure, pass-through TP loads measured at S-65 are
 subtracted from TP loads measured at S-65E in order to calculate the Lower
 Kissimmee Sub-watershed runoff contribution. No such distinction between the

956

Upper Kissimmee Sub-watershed and Lower Kissimmee Sub-watershed is made in the LOOP.

958

- 959 2. Indian Prairie Sub-watershed. Structures G-207 and G-208 pump water from Lake 960 Okeechobee as necessary to maintain adequate levels in the area's canals. As such, 961 they do not contribute to the Indian Prairie Sub-watershed basin runoff, and are not 962 included in the sub-watershed's performance measure. However, these structures are 963 included in the Northern Region of the LOOP, although positive TP loading into the 964 lake has never been reported for these structures. Four minor structures (HP-7, 965 Inflow-1, Inflow-2 and Inflow-3) are located along the east and west banks of the C-966 41 Canal downstream of S-71, although flow and water quality are not monitored at 967 these structures. Flow and water quality monitoring was initiated downstream of 968 these structures in the C-41 Canal at a location known as C41H78, but the first year 969 of reported TP loading data was not available until WY2010. Therefore, because 970 insufficient data were available, these minor structures were excluded from the 971 derivation of the performance measure for the Indian Prairie Sub-watershed.
- 972
- 973 3. West Lake Okeechobee Sub-watershed. The water control structures that discharge 974 from the West Lake Okeechobee Sub-watershed are included in two different regions 975 (Southern and Western regions) as defined by the LOOP (see Table 2-5).
- 976
- 977 4. South Lake Okeechobee Sub-watershed. The performance for the South Lake 978 Okeechobee Sub-watershed described in this document considers the performance 979 measures adopted under 40E-63, F.A.C. and the draft performance measures for the 980 Chapter 298 Districts. In contrast, the LOOP considers the S-4/Industrial Canal 981 Hydrologic Unit part of the Southern Region, whereas for this document the S-982 4/Industrial Canal Hydrologic Unit is considered part of the West Lake Okeechobee 983 Sub-watershed.

984 2.4.2 Lake Okeechobee Protection Plan

The 2011 update to the *Lake Okeechobee Protection Plan* contains planning-level estimates of the TP load reductions that may be achievable through source controls and regional projects within each sub-watershed, and these are summarized in **Table 2-7**, reprinted from the *Lake Okeechobee Protection Plan 2011 Update* (SFWMD et al. 2011a). The objective of the LOPP is to reduce loads to the lake sufficient to achieve the TMDL. In the LOPP, two general types of source controls are identified for each of the sub-watersheds:

- 9911. Reductions resulting from BMPs simulated by the Watershed Assessment Model
- 992 (applied to all basins except EAA basins), and
- **993** 2. Reductions resulting from ongoing watershed TP source control projects.
- 994

995 It should be noted that the objective of the regulatory source control program considered for 996 this project is to reduce loads in runoff by implementing onsite BMPs. The relationship 997 between the 2011 LOPP planning level estimates and the performance measure 998 methodologies proposed in this document can be described by identifying the similarities and 999 dissimilarities. While the contrasts vary among the sub-watersheds, a general description is 900 provided below.

1001

Similarities. A common feature between the approach described herein and the LOPP is that the estimated load reductions attributable to source controls were developed by Soil and Water Engineering Technology, Inc. (Bottcher 2006, SWET 2008). In the LOPP, these estimates are used for planning purposes and to calculate the load reductions expected from implementation of agricultural and non-agricultural BMPs. The exceptions are when adequate historical data were not available for development of a load-based performance measure, and in some cases a load-based performance indictor was derived.

- 1009
- 1010

1011 1012	Table 2-7	. Estir	nates	of	TP	P L	oa									he Lake Okeechobee Watershed (from	m
1012			Beill G					-)11a).	
	S	gles (6)	Adjusted I. Remain. Load* (Mons)	53	13	2	1	œ	47	2	8	19	167	105	62	* ÷. 5	
	Appendix C I Plan	P Reduction Strategles (6)	Remain Conc. (pob)		30	30	8	30	128	53	60	120	56			sins). a and or Cree to CER d CER the ba	
	Api on Pl	duction	Remain. Losd (Mons)		13	2	1	œ	47	2	8	19	167			A base 4 (1) 6 (1) nentec oir ea 0) iying	
	otect		Load Red. (Mbns)		9	35	27	88	8	2	e	2	188			ept E/ ins (9. molen), Aqu A (2.5) multir multir	
	e Pro	Near-Term P Reduction Activities (2011 to 2013)	(5) Remain. Load (Minns)	83	19	4	37	74	65	4	₽	22	355			rs exc Proje ind AS ind AS on ST on ST ed by	
	hobe				9	20	•	a	15	0	٥	7	57			CCP/D ement ACS o ACS O	
	keec	Other Regional and Sub- Regional	ote (4) Remain. Load (Mons)	84	25	60	38	82	8	4	11	28	411			ed to al d the E Alanage (3ssimt (3ssimt (3ssimt (3ssimt)	
	ake O	Other R and Red	Proje Load Red. (Mons)	0	0	2	2	8	0	-	0	۲	15			(applie (a) an vater h very (k (1 t) (1 t)	
	he La	8 Morke	ete (3) Remain. Losd (Minns)	84	25	63	39	91	80	5	11	29	426			(20.6 / (20.6 /) (20.6 /	
	der t	Activities Regional Public Works	Projec Load Red. (Mbns)		œ	ß	0	0	0	0	8	0	35			nent M (KRR, Disperent orage ssimm STAI e rem	
	e nu	Current Activities rehed P Region	ets (2) Remain. Load	97	33	68	39	91	80	5	20	29	461			ssessifier and the session projection opp, tt	
	hobe	Current Waterched P Control	Proje Load Red. (Mons)		7	19	0	0	0	0	0	0	26			hed A Resto (1.1 t) (1.1 t) Aqu (C-44 Aqu (C-44 ad WN ad WN (C-44 ad WN (C-44) ad WN (C-44) ad WN (C-44) ad WN (C-44) ad (C-44) ad (C-44	
	keec	nd Coet re rented	's (1) Remain. Load (Mons)	97	39	87	39	91	80	5	20	29	487			Vaters HWTT HWTT Vators (8 t), 1, and (8 t), 1, Lakk iss that	
	ake C	Owner and Cost chare Implemented	BMPs (1) Load Remain Red. Load (Mons) (Mons)		18	18	0	10	9	0	0	0	52			ed by V 5.9 t), F 5.9 t), Hass sperse strt (3.5 t, thas str (3.5 t, thas str (46.4 t (46.4 t (46.4 t (1(46.4 t (10) s (1)))	ų.
	to	Average	Cono. (Caloulat ed) (2001 2008) (ppb)	92	129	578	110	373	236	138	152	180	180			mulate EESP (5 EESP (5 ESP (5 C C S T Dis C S T A C S	,
	ctions	0	Load (Measure ((d)(2001- e 2008) (Mtons)	97	57	105	40	101	86	ß	20	29	539			MPs si (5.0 t) I projectal Be Rande RMPs (14.3 (14.3 e parce in cond	
	Redu	e II.			254	000	326	581	324	270	119	522	464			hare B rojects arojects egiona serve sid serve sid serve sid serve sid serve sid serve sid	
	Load	Fahed Bas	Annual Disoharge (Measured) (2001-2006) (Aore-ft)	853,368	359,254	146,900	290,826	219,581	295,324	29,270	107,419	131,522	2,433,464			I cost-s ritical F egiona d sub-r d sub-r tost-s f cost-s eatmer eatmer intration	
	alan Update 2011 Appen Appen of Estimated P Load Reductions to Lake Okeechobee under the Lake Okeechobee Protection Plan	Wate	Area (aorea)	1,021,674	429,283	198,299	392,147	294,147	315,007	200,993	361,707	237,831	3,451,087			implemented and cost-share BMPs simulated by Watershed Assessment Model (applied to all basins except EAA basins). Ished P source control projects. In entation of LO Critical Projects (5.0 t), Kissimmee River Restoration (KRR) (20.6 t), and the ECP/Diversions (9.4 t). Begional and sub-regional projects: Dispersed Water Management Projects (7.6 t). In a Grassy site (2.9 t), Lakeside Ranch STA Phase I (9 t), Aquifer Storage Recovery (Kissimmee Pilot ASR and Taylor Critical Reserve Special Project (3.5 t), and C-44 project (6.7 t). In a Grassy site (2.9 t), Lakeside Ranch STA Phase I (9 t), Aquifer Storage Recovery (Kissimmee Pilot ASR and Taylor Critical Project (3.5 t), and C-44 project (6.7 t). Implemented and cost-share BMPs (18.0 t), the Dispersed WMP - potential sites (6.1 t), Brady Ranch (2.1), Aquifer Storage Implemented and cost-share BMPs (18.0 t), the Dispersed WMP - potential sites (6.1 t), Risimmee reservoir east (6.5 implemented and cost-share BMPs (18.0 t), the Dispersed WMP - potential sites (6.1 t), Brady Ranch (2.1), Aquifer Storage if treatment to LOWP reservoirs (14.6.4 t), Lakeside Ranch STA Phase II (10.0 t), Clewiston STA (2.5 t), and CEI from chemical treatment at the parcel level (46.4 t), Lakeside Ranch STA Phase II (10.0 t), Clewiston STA (2.5 t), and CEI projected concentration.	
	Updat stima		ع <u>م</u>	1,0	4		38	20	'n	20	36	23	3.4			plement tation onal a ng Crea plement on che on che olecter	
1012	Lake Okeechobee Protection Plan Update 2011 Table C-1: Summary of Estimated P		Sub-watershed	Upper Kissimmee (S-65)	Lower Kissimmee (S-65A,B,C,D,E)	Taylor Creek/Nubbin Slough (S-191,154,133,135	Lake Istokpoga (S-68)	Indian Prairie Basins (12 basins)	Fisheating Creek & Nicodemus Slough	West Lake Okeechobee Basin (S-77)	EAA Basins	East Lake Okeechobee Basins (C-44, L-8)	Total Reductions to the Lake	TMDL (not including 35 t of atmospheric deposition)	Remaining Load	resulting from owner tresulting from owner resulting from the pla resulting from other r esuiting from other stration) (1.3.1), Fishe resulting from owner resulting from owner P reductions resulting t 1).	
1013	-1	L		<u> </u>	_		-1	-	-	-				F		100028 8 *	

1011 Table 2-7. Estimates of TP Load reductions in the Lake Okeechobee Watershed (from

1014 Dissimilarities. Differences between the 2011 LOPP planning level estimates and the1015 proposed performance measure methodologies are described below.

- 1016 1017
- 1. The direction of discharge and location of the monitoring stations used for the annual assessment.
- 1018 LOPP. In the 2011 LOPP, the baseline TP load and load reductions are associated
 1019 with only the structures that discharge into Lake Okeechobee, e.g. S-77 for the East
 1020 Caloosahatchee Hydrologic Unit.
- 1021LOW Performance Measure Methodology. The performance measures and1022performance indicators described herein establish annual TP targets for the basins,1023and include TP loads from structures that do not discharge into the lake. For1024example, the methodology for the East Caloosahatchee Hydrologic Unit includes TP1025loads at S-77 (which discharges into Lake Okeechobee) combined with TP loads at S-102678 (which discharges into the Caloosahatchee River).
- 1027 2. Calculation of pass-through loads.
- LOPP. While both the 2011 LOPP and the proposed approach differentiate between
 basin runoff loads and those loads that pass through the basin from upstream sources,
 different algorithms are used to calculate pass-through loads. Please refer to the 2011
 LOPP for a description of the algorithm used to calculate pass-through loads.
- LOW Performance Measure Methodology. The algorithms used to calculate passthrough loads for the proposed approach are described in Section 2.6.1. When a
 downstream basin receives pass-through loads from an upstream basin these loads are
 outside the control of the collective source control programs within the basin.
 Therefore, the incoming loads from the upstream basin will be accounted for in the

annual performance determination process and will not impact the annualperformance determination of the downstream basin.

1039 3. Load Reduction Estimates.

1040LOPP. The planning-level load reduction estimates in the 2011 LOPP reflect load1041reductions resulting from all initiatives described in the *Lake Okeechobee Protection*1042*Plan*, including both source control and regional projects (SFWMD et al 2011a).1043Collectively, source control measures and regional projects described in the *Lake*1044*Okeechobee Protection Plan* will combine to meet the applicable TMDL and other1045water quality objectives.

- 1046 LOW Performance Measure Methodology. The goal for the collective TP source 1047 control programs in the Lake Okeechobee Watershed will be based on TP load 1048 reductions that can reasonably be expected to be achieved through full 1049 implementation of BMPs. The performance measure methodologies described herein 1050 are used to make annual performance determinations to establish if the BMPs 1051 implemented within individual basins are achieving the TP load reductions that can 1052 be expected. Unlike the planning-level estimates in the 2011 LOPP, the performance 1053 measures methodologies only consider BMPs and do not consider the effectiveness of 1054 other initiatives like regional projects.
- 1055 4. Different evaluation periods.

1056 LOPP. In the 2011 LOPP, the planning-level load reduction estimates reflect a long-1057 term average annual load reduction.

1058 LOW Performance Measure Methodology. In contrast, the proposed performance
 1059 measures presented herein are based on annual TP loads, with hydrologic variability
 1060 explicitly addressed through the use of a regression equation that incorporates rainfall

1061		characteristics, and with a two-part (Target/Limit) methodology ⁴ which evaluates
1062		loads annually and over a three year period.
1063	5.	Different Base Periods for Derivation of Targets.
1064		
1065		LOPP. For the 2011 LOPP, the baseline loads were established for the 9-year base
1066		period of January 1, 2001 through December 1, 2009.
1067		
1068		LOW Performance Measure Methodology. The performance measure
1069		methodologies described in this document use measured flow and water quality data
1070		for basin-specific base periods, ranging from eight to fourteen years. These base
1071		periods were selected based on the criteria described in Section 1.2, including because
1072		they precede implementation of most source controls.
1073		
1074	6.	Consideration of hydrologic variability.
1075		
1076		LOPP. The load reduction estimates presented in the 2011 LOPP do not include
1077		adjustments for future hydrologic variability.
1078		
1079		LOW Performance Measure Methodology. When possible with the available data,
1080		the recommended performance measure methodologies explicitly account for
1081		hydrologic variability through prediction equations that use one or more annual
1082		rainfall characteristics.
1083		
1084		
1085		

 $^{^4}$ In those basins where insufficient data precluded establishment of a performance measure, an annual performance indicator was established. The characteristics of the performance indicators are described in Sections 3.6 and 3.8.

1086 7. Calendar Year vs. Water Year.

- 1087 LOPP. In the 2011 LOPP, the long-term average annual load reduction is based on a
 1088 calendar year averaging interval (January 1- December 31) in order to be consistent
 1089 with the TMDL target which is a 5-year moving average based on calendar year
 1090 averaging intervals (January 1 December 31).
- 1091 LOW Performance Measure Methodology. The approaches described herein are
 1092 based on the District's May 1 April 30 Water Year.
- 1093

1094 2.5 Definitions

1095

For the purpose of this Draft *Technical Support Document*, the following definitions will
apply; these definitions may change over the course of the project, and an up-to-date set of
definitions will be included in the Final *Technical Support Document*.

- (1) "Annual Load Target" means the component of the two-part performance measure
 methodology that evaluates whether a basin's runoff TP load levels are below or above
 the central measure (e.g., median) of the TP load level of an appropriate reference period,
 adjusted for hydrologic variability.
- (2) "Annual Load Limit" means the component of the two-part performance measure
 methodology that evaluates whether a basin's runoff TP load levels are below or above
 the upper 90 percent confidence limit on the predicted Annual Load Target
- (3) "Base Period" means the benchmark period of historical observed data on which
 performance measures are based. Base periods should meet, as much as possible, the
 following criteria: having at least eight years of concentration and flow data to adequately
 represent nutrient levels through a wide range of hydrologic conditions; be representative
- 1110 of current operating conditions affecting nutrient loading (unless these conditions can be

- corrected through data adjustments); have a reasonable correlation between rainfall and
 nutrient loads; precede full implementation of collective source control measures; be free
 of trends in rainfall, flow or loads (unless these trends can be eliminated through data
 adjustments); and be free of unexplained outliers in the rainfall, flow, or load data.
- (4) "Calendar Year" means the twelve months beginning January 1 and extending throughDecember 31.
- (5) "Evaluation Period" means the time period for which the observed TP loads for a basin
 will be compared to the Annual Target. This period includes a minimum of three water
 years, including the most recent complete water year ("Evaluation Year") but does not
 include years when the performance determination was suspended because the hydrologic
 conditions during the Evaluation Period do not reflect the hydrologic conditions that
 occurred during the historical Base Period.
- (6) "Evaluation Year" means the Water Year to be evaluated relative to the performancemeasure methodology.
- (7) "Hydrologic unit" means a basin that discharges to more than one watershed, i.e., to LakeOkeechobee and to a river watershed.
- (8) "Load" is the mass of the nutrient of concern carried past a specific point of discharge during a specific period of time by the movement of water, e.g. metric tons of TP per year. Water quality concentration and water quantity (flow) data are required to calculate the phosphorus load discharged past the monitoring point, as defined by the following general equation:
- 1132 TP Load (mass/time) =TP concentration (mass/volume) x flow (volume/time)
- (9) "Pass-Through Flow" is the portion of inflows to a basin from external sources that is
 discharged from the basin within a specified time frame (i.e. daily). Basin-level passthrough flows are calculated as the minimum of the basin inflows or outflows.
- (10) "Pass-Through Load" is the inflow load resulting from pass-through flow. Basinlevel pass-through loads are calculated as the product of the basin-level flow-weighted
 mean inflow concentration and the basin-level pass-through flow.

(11) "Performance Determination" means the process by which total phosphorus levels for
a basin during the evaluation period are compared against an established quantifiable
metric.

(12) "Performance Indicator" means a numeric nutrient load goal that could be achieved
through the implementation of source control programs for a basin where the criteria for
establishing a performance measure are not met. A performance indicator may be based
on available data (a reference period), and best professional judgment A performance
indicator reflects the District's commitment to adaptive management and continuous
improvement in nutrient reductions.

(13) "Performance Measure" means a numeric nutrient load goal that could be achieved
through the implementation of source control programs for a basin, established from a
representative range of historical flow, nutrient, and rainfall conditions that existed
during a specified Base Period.

- (14) "Performance Measure Methodology" means a description of the process for
 assessing the effectiveness of the collective source control programs within a basin. The
 methodology could apply to either a performance indicator or performance measure.
- (15) "Reference Period" means the benchmark period of historical measured data on
 which performance indicators are based. Reference Periods shall include, at a minimum,
 five years of nutrient concentration or load data measured during a representative range
 of conditions affecting nutrient concentration or loading from the basin. Exceptions may
 be considered on a case by case basis.
- (16) "Runoff Load" means the annual nutrient load measured at the outlets of the basinminus pass-through loads and adjusted for regional projects, if applicable.
- 1162 (17) "Scaled loads" means the observed Base Period loads reduced by the recommended1163 load reduction.
- (18) "Sub-watershed" means lands that make up the contributing surface area for which
 the District has determined the water quality to be represented by specified monitoring
 sites.

1167	(19) "Summary Basin" means an intermediate area which is located within one of nine
1168	sub-watersheds for which the District has determined the water quality to be represented
1169	by specified monitoring sites.

1170 "Water Year" means the period beginning May 1 and continuing until April 30 of the (20)1171 following calendar year. The water year is named for the year in which it ends.

1172

1173 2.6 Performance Measure Methodology

1174 This section presents common elements of the proposed performance measure methodologies 1175 for basins having a minimum of eight years of concentration and flow data which adequately 1176 represent TP in discharge runoff during a wide range of hydrologic conditions. For basins 1177 that discharge to more than one receiving water body (e.g., the C-44 Hydrologic Unit 1178 discharges to both Lake Okeechobee and the St Lucie River/Estuary), the performance 1179 measures are based on the total discharge to all receiving waters.

1180

2.6.1 Consideration of Pass-through Flow and Load

1181

If a basin receives flow and TP load from an upstream basin or water body, the performance 1182 1183 measure methodology adjusts the overall observed flow and loads to account for the 1184 component passing through, yielding only flow and loads from basin runoff for the 1185 performance determination (described in Section 2.6.8). The pass through calculation follows 1186 a similar protocol as was used in Chapter 40E-63, F.A.C. Pass-through loads are estimated by 1187 comparing the total basin inflows to the total basin outflows on a daily basis, as generally 1188 described below.

- 1189
- 1190 $Inflow_{Basin}$ = cumulative inflow at basin boundary structures
- 1191 Outflow_{Basin} = cumulative outflow at basin boundary structures
- 1192 $PassThroughFlow_{Basin} = minimum (Inflow_{Basin}, Outflow_{Basin})$

1193	
1194	Basin runoff is then calculated as the difference between the total outflow and the pass-
1195	through flow:
1196	$Runoff_{Basin} = Outflow_{Basin}$ - PassThroughFlow_{Basin}
1197	
1198	Pass through TP loads are calculated as the product of the pass-through flow and the flow
1199	weighted mean inflow concentration measured at all of the basin's boundary structures:
1200	
1201	InflowLoad _{Basin} = cumulative inflow load at all basin boundary structures
1202	$InflowConcentration_{Basin} = InflowLoad_{Basin} / Inflow_{Basin}$
1203	$PassThroughLoad_{Basin} = PassThroughFlow_{Basin} * InflowConcentration_{Basin}$
1204	
1205	The basin runoff TP load is the difference between the total outflow load and the pass-
1206	through load:
1207	
1208	OutflowLoad _{Basin} = cumulative outflow load at all basin boundary structures
1209	$RunoffLoad_{Basin} = OutflowLoad_{Basin} - PassThroughLoad_{Basin}$
1210	
1211	Basin-specific details of the pass through calculations are provided in Section 3 and in
1212	Appendix A.
1213	
1214	2.6.2 Source Control Effectiveness
1215	
1216	The effectiveness of source controls is ultimately measured by the reduction of nutrients in
1217	runoff. Conservative reduction estimates from the implementation of collective source
1218	control programs in comparison to a base period were developed. Source control programs
1219	are classified as non-point or point sources (Table 2-2). Note that reductions were not

- 1220 considered for programs whose nutrient load reductions are uncertain in the long term or for1221 projects primarily intended to maintain current nutrient levels.
- 1222

1223 Source control programs include BMPs and regulations with requirements for BMP 1224 implementation. These programs are complementary to each other to address various sources 1225 based on statutory mandates and agency jurisdiction. For example, the FDACS Agricultural 1226 BMP Program includes nutrient management BMPs for agricultural operations, the Urban 1227 Turf Fertilizer Rule limits the phosphorus and nitrogen content of fertilizers in urban turf and 1228 lawns, and the biosolids and manure rules provide specific requirements for these nutrient 1229 sources. The BMPs upon which the nutrient load reductions are based represent what would 1230 be expected to result from reasonably funded cost share programs or a modest regulatory 1231 approach (Bottcher 2006 and SWET 2008). The programs and BMPs applicable to the primary land uses in the Lake Okeechobee watershed are presented in Table 2-8.

Land Use	se	Citrus	Improved Pastures	Residential and Urban	Dairies	Other agriculture
Water shed	1995	7.0 %	22.4 %	6.9 %	0.5 %	18.3 %
a creage Percentage	2008	4.6 %	21.4 %	13.0 %	0.2 %	23.3 %
N utrient Mgc	Mgt	 Typical: P. Soil testing P. Soil testing Includes indementation biosolids rule Controlled application (timing & placement, fettigation) Spill prevention High End: Slow release fertilizer 	 <i>Typical:</i> P. Soil testing Includes implementation of biosolids rule, the aminal manure implementation unle, and the septage application rule Spill prevention Spill prevention Grass management² and the ordinon grass management² and the set of the set	Typical: • Reduced ferdilization in accordance with the Urban Turf Ferdilizar Rule • Controlled applie ation (timing & placement) • Spill prevention High End: • Florida Friendly Landscape	 <i>Typical:</i> P: Soil testing Includs: implementation of the CARO rule, CARO rule, Feed management Grass management Grass management Improved forage/sprayfield management - Palan eed with high puptak e crop rotations <i>High End:</i> Solids separation for officite disposal Add housing to move animals officied³ 	 Typical: P: Soil testing P: Soil testing Includes implementation of ticosolida rule Controlled application (timing & placement, fertigation) Spill prevention High End: Slow release ferthizer
Water Mg	ŭ	 <i>Typical:</i> Storm water detertion/retention because dimproved inrigation and drainage or ERP permitted systems High End: Water reuse from existing retention/detention ponds Wetland restoration 	 Typical: Wetland restoration Retention basin by working pens Filigh End: Storrwater detention/ratention 	Typical: Dry determion swales (0.25 inch) and wet determion (0.25 inch) <i>High End</i> : • ERP permitted systems, when required • Regional projects for dry determion and wet determion	Typical: • Improved Imgation and Drainage Management • Welland restoration • Welland restoration High End: • Expanded waste storage ponds • Expanded sprayfields • Storm water detention/retention	Typ zeal: Storn water detention/retention because of improved imigation and drainage, flooded fields, and inser board control or ERP permitted systems <i>High End</i> : Metland restoration
Particulate Matter and Sediment Controls	Matter nemt Is	Typ ical: • Grass management • Grass management • between trees • Sediment traps ¹ • High End: • Grassed swales • Grassed swales	Note: Grass management will also apply to particulate matter and sediment controls	Typical: • Street sweeping • Sediment/baffle box es	<i>Typical:</i> • Buffer strips Note: Grass management and improved forage/sprayfield management will also apply to partioulate matter and sediment controls	Typical: • Cover erops • Sediment traps

1243 A spreadsheet model, similar to the tool developed for the Lake Okeechobee, St. Lucie River, 1244 and Caloosahatchee Watershed Protection Plans, was developed to estimate nutrient load 1245 reductions for each basin. The basin reduction was calculated as the nutrient load reductions 1246 for each land use weighted by each land use acreage and unit area load (pounds/acre/year, 1247 lbs/ac/yr). The nutrient load reductions (percentage) per land use and unit area load 1248 coefficients were based on the technical documents produced for the Lake Okeechobee, the 1249 Caloosahatchee, and the St. Lucie River Watershed Protection Plans (Bottcher, 2006 and 1250 SWET 2008), respectively. Land use acreages reflected 1995 conditions and were compared 1251 to current land use acreages to verify that they were generally representative of current 1252 conditions, otherwise warranting adjustment.

1253

1254 It is recognized that there may be a great deal of variability in BMP effectiveness due to 1255 specific implementation, soil characteristics, assimilation, and nutrient responses. Therefore, 1256 ranges of effectiveness from "Low" (limited effectiveness) to "High" (optimal effectiveness), 1257 as well as, a "Typical" (most likely condition), were reviewed to determine those most 1258 appropriate. The typical reduction levels were adjusted to account for partial implementation 1259 of source control programs (or BMPs) in comparison to the base period and current water 1260 quality levels in consultation with District staff. Reductions were rounded to account for the 1261 inherent uncertainty in the data.

1262

1263 These reduction levels relative to the respective base periods provide a preliminary 1264 recommendation for development of performance measures. As additional information is 1265 obtained during the stakeholder technical review process, the nutrient load reduction 1266 percentages presented in **Table 2-9** may be refined. Please refer to Appendix D for 1267 additional clarification on the source control effectiveness methodology.

- 1268
- 1269
- 1270

Basin	Recommended load reduction percent
S-133	25
S-154	35
S-191	40
Lower Kissimmee	30
C-44	35
L-8	20
Indian Prairie	30
Fisheating Creek	30
S-4/Industrial Canal	30
East Caloosahatchee	30

Table 2-9. Recommended TP load reduction percentages.

1	2	7	3
---	---	---	---

- 2.6.3 Significant Digits
- 1275

1274

1276 The development of the performance measure methodologies used the following protocol for1277 rounding off data values during calculations:

Daily rainfall station source data were available at the nearest 0.01 inch. Average daily rainfall values were calculated from the individual station source data using Thiessen weights provided by the District, and rounded to the nearest 0.001 inch.

- Monthly rainfall values were calculated as the sum of the daily values and rounded to
 the nearest 0.01 inch.
- Annual rainfall values were calculated as the sum of the monthly values and rounded to the nearest 0.01 inch.
- Structure/site flow source data were estimated from structure rating curves, and
 available at the nearest 0.01 cubic foot per second day.
- Monthly runoff volumes were rounded to the nearest 0.1 acre foot (AF).

1288	• Annual runoff volumes were calculated as the sum of the monthly values and rounded
1289	to the nearest 1 AF.
1290	• TP concentration source data were measured from samples collected at representative
1291	structures/sites, and were reported at the nearest part per billion (ppb or μ g/L).
1292	• Monthly TP loads were calculated as the sum of the product of daily flow and daily
1293	concentration assigned by the load algorithm, then rounded to the nearest 0.1 kg.
1294	• Annual TP loads were calculated as the sum of the monthly values and rounded to the
1295	nearest 0.001 metric ton (mt).
1296	• Monthly flow-weighted mean TP concentrations were calculated from monthly flow
1297	and load values (rounded to the nearest 0.1 AF and 0.1 kg, respectively), and then
1298	rounded to the nearest 1 μ g/L.
1299	• Annual flow-weighted mean TP concentrations were calculated from annual flow and
1300	load values (rounded to the nearest 1 AF and 0.001 mt, respectively), and then
1301	rounded to the nearest 1 μ g/L.
1302	• In order to preserve the above precision,
1303	• calculations involving log and square root transformations were carried out to
1304	the fifth decimal place,
1305	• regression coefficients were carried out to the fifth decimal place, and
1306	o intermediate calculations were carried out to two more decimal places and
1307	then rounded to achieve the above significant digits.
1308	
1309	2.6.4 Selecting the Regression Equation
1310	
1311	Prediction equations for annual TP load, expressed as a function of the annual rainfall, were
1312	examined to account for hydrologic variability. Fifty-four regression equations correlating
1313	annual load with annual rainfall and monthly rainfall characteristics (coefficient of variation,

1314 skewness and kurtosis) were evaluated (see **Table 2-10**).

1315	Table 2-10. Regression equations evaluated to express annual TP load as a function of
1316	hydrologic variability.

Regr.	Response		Baswasian Equation
No.	Variable	Predictor Variables	Regression Equation
1	Load	Rain	Annual Load Target = $a + b$ Rain
2	ln(Load)	ln(Rain)	Annual Load Target = $\exp(a + b \ln(Rain))$
3	ln(Load)	ln(Rain), S	Annual Load Target = exp $(a + b1 \ln(Rain) + b2 S)$
4	ln(Load)	Ln(Rain), CV, S	Annual Load Target = exp $(a + b1 \ln(Rain) + b2 CV + b3 S)$
5	ln(Load)	ln(Rain), CV, S, K	Annual Load Target = exp $(a + b1 \ln(Rain) + b2 CV + b3 S + b3 K)$
6	ln(Load)	h(Rain), CV	Annual Load Target = $\exp(a + b1 \ln(Rain) + b2 CV)$
7	ln(Load)	ln(Rain), ln(last year's Rain)	Annual Load Target = exp $(a + b1 \ln(Rain) + b2 \ln(last year's Rain))$
8	Load	S, CV, Rain	Annual Load Target = $a + b1 S + b2 CV + b3 Rain$
9	Load	CV, S, K, Rain	Annual Load Target = $a + b1 CV + b2 S + b3 K + b4 Rain$
10	ln(Load)	h(Rain), h(last year's Rain), CV, S, K	Annual Load Target = exp (a + b1 $\ln(Rain)$ + b2 $\ln(last year's Rain)$ +b3 CV + b4 S + b5 K)
11	ln(Load)	ln(Rain), ln(last year's Rain), CV	Annual Load Target = exp $(a + b1 \ln(Rain) + b2 \ln(last year's Rain) + b3 CV)$
12	Load	Rain, last year's Rain	Annual Load Target = $a + b1$ Rain + $b2$ (last yr's Rain)
13	Load	S, CV, Rain, last year's Rain	Annual Load Target = a + b1 S + b2 CV + b3 Rain + b4 (last yr's Rain)
14	Load	CV, Rain	Annual Load Target = $a + b1 CV + b2 Rain$
15	Load	Rain, S	Annual Load Target = a + b1 Rain b2 S
16	Load	ln(Rain)	Annual Load Target = $a + b \ln(Rain)$
17	ln(Load)	Rain	Annual Load Target = $\exp(a + b \operatorname{Rain})$
18	Load	ln(Rain), ln(last year's Rain)	Annual Load Target = $a + b1 \ln(Rain) + b2 \ln(last year's Rain)$
19	Load	ln(Rain), S	Annual Load Target = $a + b1 \ln(Rain) + b2 S$
20	Load	Ln(Rain), CV, S	Annual Load Target = $a + b1 \ln(Rain) + b2 CV + b3 S$
21	Load	ln(Rain), CV, S, K	Annual Load Target = $a + b1 \ln(Rain) + b2 CV + b3 S + b4 K$
22	Load	ln(Rain), CV	Annual Load Target = $a + b1 \ln(Rain) + b2 CV$
23	ln(Load)	S, CV, Rain	Annual Load Target = exp $(a + b1 S + b2 CV + b3 Rain)$
24	ln(Load)	CV, S, K, Rain	Annual Load Target = exp ($a + b1 CV + b2 S + b3 K + b4 Rain$)
25	Load	h(Rain), h(last year's Rain), CV, S, K	Annual Load Target = a + b1 ln(Rain) + b2 ln(last year's Rain) + b3 CV + b4 S + b5 K
26	Load	h(Rain), h(last year's Rain), CV	Annual Load Target = $a + b1 \ln(Rain) + b2 \ln(last year's Rain) + b3 CV$
27	ln(Load)	Rain, last year's Rain	Annual Load Target = exp $(a + b1 \operatorname{Rain} + b2 \operatorname{(last yr's Rain)})$
28	ln(Load)	S, CV, Rain, last year's Rain	Annual Load Target = exp (a + b1 S + b2 CV + b3 Rain + b4 (last yr's Rain))
29	ln(Load)	CV, Rain	Annual Load Target = $\exp(a + b1 \text{ CV} + b2 \text{ Rain})$
30	ln(Load)	Rain, S	Annual Load Target = $\exp(a + b1 \operatorname{Rain} + b2 \operatorname{S})$
31	Load	ln(Rain), S, CV*S	Annual Load Target = $a + b1 \ln(Rain) + b2 S + b3 CV*S$
32	ln(Load)	h(Rain), S, CV*S	Annual Load Target = exp $(a + b1 \ln(Rain) + b2 S + b3 CV*S)$
33	Load	ln(CV), ln(Rain)	Annual Load Target = $a + b1 \ln(CV) + b2 \ln(Rain)$
34	ln(Load)	ln(CV), ln(Rain)	Annual Load Target = exp $(a + b1 \ln(CV) + b2 \ln(Rain))$
35	Load	ln(CV), ln(Rain), S	Annual Load Target = $a + b1 \ln(CV) + b2 \ln(Rain) + b3 S$
36	ln(Load)	ln(CV), ln(Rain), S	Annual Load Target = exp $(a + b1 \ln(CV) + b2 \ln(Rain) + b3 S)$
37	sqrt(Load)	Rain	Annual Load Target = $(a + b Rain)^2$
38	sqrt(Load)	S, CV, Rain	Annual Load Target = $(a + b1 S + b2 CV + b3 Rain)^2$
39	sqrt(Load)	CV, S, K, Rain	Annual Load Target = $(a + b1 CV + b2 S + b3 K + b4 Rain)^2$
40	sqrt(Load)	Rain, last year's Rain	Annual Load Target = $(a + b1 \text{ Rain} + b2 (\text{last yr's Rain}))^2$
41	sqrt(Load)	S, CV, Rain, last year's Rain	Annual Load Target = $(a + b1 S + b2 CV + b3 Rain + b4 (last yr's Rain))^2$
42	sqrt(Load)	CV, Rain	Annual Load Target = $(a + b1 \text{ CV} + b2 \text{ Rain})^2$
43	sqrt(Load)	Rain, S	Annual Load Target = $(a + b1 \text{ Rain } b2 \text{ S})^2$
44	sqrt(Load)	ln(Rain)	Annual Load Target = $(a + b \ln(Rain))^2$
45	sqrt(Load)	ln(Rain), ln(last year's Rain)	Annual Load Target = $(a + b1 \ln(Rain) + b2 \ln(last year's Rain))^2$
46	sqrt(Load)	ln(Rain), S	Annual Load Target = $(a + b1 \ln(Rain) + b2 S)^2$
47	sqrt(Load)	Ln(Rain), CV, S	Annual Load Target = $(a + b1 \ln(Rain) + b2 CV + b3 S)^2$
48	sqrt(Load)	ln(Rain), CV, S, K	Annual Load Target = $(a + b1 \ln(Rain) + b2 CV + b3 S + b4 K)^2$
49	sqrt(Load)	h(Rain), CV	Annual Load Target = $(a + b1 \ln(Rain) + b2 CV)^2$
50	sqrt(Load)	ln(Rain), ln(last year's Rain), CV, S, K	Annual Load Target = $(a + b1 \ln(Rain) + b2 \ln(last year's Rain) + b3 CV + b4 S + b5 K)^2$
51	sqrt(Load)	h(Rain), h(last year's Rain), CV	Annual Load Target = $(a + b1 \ln(Rain) + b2 \ln(last year's Rain) + b3 CV)^2$
52	sqrt(Load)	ln(Rain), S, CV*S	Annual Load Target = $(a + b1 \ln(Rain) + b2 S + b3 CV*S)^2$
53	sqrt(Load)	ln(CV), ln(Rain)	Annual Load Target = $(a + b1 \ln(CV) + b2 \ln(Rain))^2$
54	sqrt(Load)	ln(CV), ln(Rain), S	Annual Load Target = $(a + b1 \ln(CV) + b2 \ln(Rain) + b3 S)^2$

For the majority of the hydrologic basins within the Lake Okeechobee Watershed, a statistically significant prediction equation was found for annual load and an associated equation derived for the upper confidence limit (UCL), expressed as a function of the annual rainfall to account for hydrologic variability. If a suitable regression equation expressing TP levels as a function of hydrologic variability could not be identified, the basin was identified as needing a performance indicator.

1324

1327

1325 The multiple selection factors used to identify the recommended regression equation are1326 described below.

Outliers. All annual values of the independent and dependent variables were
 screened for outliers, using the Maximum Normal Residuals technique (Snedecor and
 Cochran 1989). If a potential outlier was identified, the physical conditions that may
 have produced the value were investigated to assess whether the value should be
 retained in the analysis.

- 1333 2. Testing the assumption of normality. Many statistical tests, including linear regression, assume that the data values or their residuals in the case of regression equations, are drawn from a normal distribution. Tests for normality were conducted for the annual values (loads, concentrations, unit area loads and rainfall) and for the residuals resulting from the regression equations, where
- 1338 residual = observed value minus the predicted value

1339To assess the validity of this assumption, the method of Chambers *et al.* (1983) was1340used. This is an approximate method using graphical procedures. The data are1341plotted against a theoretical normal distribution so that the points should form an1342approximately straight line. Departures from a straight line suggest a non-normal

distribution. The plot is formed by placing ordered response values on the Y-axis andnormal order statistic medians on the X-axis.

1345The test for approximate significance is then based on the probability associated with1346the Pearson's Correlation Coefficient between the two sets of statistics. A test for the1347lognormal distribution was achieved by converting the observed data values to the1348logarithm of the value then re-applying the Chambers *et al.* method (1983).

1349

3. Standard error of the regression equation (also known as the standard error of the estimate and the standard error of the prediction residuals). The smaller the standard error of the regression equation, the better the equation "fits" the observed data. To compare the standard error of the regression equation that is based on log-transformed variables, a back-transformed standard error was calculated, estimated by transforming the predicted and original values back to original units of the dependent variable.

1357

4. **Strength of the correlation.** A measure of the strength of the regression relationship 1358 is the Coefficient of Determination, commonly expressed as R^2 , which represents the 1359 proportion of the variance in the dependent variable that can be explained by the 1360 1361 linear relationship with the predictor variable(s). In general, the higher the value of R^{2} , the stronger the correlation between the dependent variable and the predictor 1362 By itself, R^2 is not sufficient to demonstrate the strength of the 1363 variable(s). correlation, and so other tests are performed (see below). The adjusted R^2 , which 1364 1365 accounts for multiple predictor variables, was also used to help determine the best 1366 regression equation.

- 1367
- 1368

1369

5. Statistical significance of the regression coefficients. In a simple linear regression equation, where there is one predictor variable (say, annual rainfall) and one

dependent variable (say, annual load), a Student's t-test is performed to determine
whether the regression coefficient (the slope of the line in this simple case) is
significantly different from 0. When the regression equation has multiple
independent variables, a Student's t-test is performed to determine if all the
regression coefficients are significantly different from 0. Regression equations in
which one or more of the predictor variable coefficients were not significantly
different from 0 were not used.

- 1378 6. Uniform variance of the residuals (homoscedasticity). Typically, standard tests are 1379 performed to determine whether there is heteroscedasticity in the residuals of the 1380 regression equation, e.g., White's test or the Bruesch-Pagan test. However, the 1381 sample sizes for those tests need to be larger than 30, considerably larger than the 1382 sample sizes available in the Base Periods used for developing the performance measure methodologies (typically 8-15). 1383 As an alternative, scatterplots of 1384 standardized residuals were prepared for each independent variable to visually inspect 1385 for non-uniform variance, such as increasing or decreasing variance. In addition, the 1386 presence of a trend in the square of the residuals was also tested for the response 1387 variable by performing a Student's t-test on the regression coefficients: if the 1388 coefficients were not statistically different from 0, then it was determined that a trend the variance was not present, i.e., homoscedasticity as 1389 in opposed to 1390 heteroscedasticity.
- 1391

1377

- 1392 1393
- 1393 1394 1395 1396 1397

7. Collinearity. For multiple linear regression equations, i.e., those with more than one predictor variable, the correlation between the predictor variables was calculated using the Pearson's Correlation Coefficient. A value less than 50 percent was deemed to be free of collinearity. A value greater than 90 percent triggered a positive hit on collinearity, and the regression equation was considered unacceptable. Values between 50 percent and 90 percent triggered an additional check, and the relative

- standard error of the regression coefficients (standard error for the coefficient divided
 by the coefficient) was evaluated. A value above 200 percent in conjunction with a
 correlation of greater than 50 percent triggered a positive hit on collinearity, and the
 regression equation was considered unacceptable.
- 1403 In general, the use of the previous year's rainfall as a predictor variable was avoided due to concerns of collinearity between rainfall and the previous year's rainfall. In 1404 the case of the S-133 Summary Basin, the highest adjusted R² for a regression 1405 1406 equation that did not contain prior year as a predictor variable was only 23 percent (compared to 79 percent when using a regression equation with prior year's rain as a 1407 1408 predictor variable). Consistent with the guidance above, collinearity was checked for 1409 the Annual Load Target equation, and determined to be acceptable, in that there was 1410 no statistically significant correlation between annual rainfall and prior year's rainfall.
- 1411

- 8. Absence of a temporal trend during the Base Period. Seasonal Kendall Tau (SKT) 1412 1413 trend analyses using monthly data were performed to determine the presence of a 1414 temporal trend in the data. The presence of a trend in monthly loads or 1415 concentrations during the Base Period that is not related to variations in annual 1416 rainfall may indicate the presence of one or more factors that are contributing to 1417 variations in nutrient levels. For example, phased implementation of source controls 1418 in the watershed could result in a trend in the monthly nutrient levels. If a trend is 1419 detected that is not related to variation in rainfall, de-trending the data may be 1420 necessary. One common approach would be to perform an SKT trend analysis using 1421 the monthly load or concentration data, and then subtracting the "trend," defined as 1422 the slope of the SKT trend line times the elapsed time since the beginning of the data 1423 record.
- 1424

1425	9. Avoid overparameterization. Overparameterization occurs when the number of
1426	predictor variables approaches the sample size, artificially inflating the value of R^2 .
1427	All other factors being equal, a regression equation with only one predictor variable
1428	would be given precedence over a regression equation with two or more independent
1429	variables. A ratio was used help quantify the degree of parameterization:
1430	Ratio = years in the Base Period / number of predictor variables
1431	Haan (1977) suggests a rule of thumb that the ratio should be above 2.86. As a
1432	reference, the regression equation used for the EAA Basin in Chapter 40E-63, F.A.C.
1433	had a ratio of $9/3 = 3.0$.
1434	
1435	2.6.5 Exceedance Frequency Analysis
1436	
1437	The last step in the development of the performance measure was to review the results to
1438	determine if they were reasonable and defensible compared to theoretical statistical analysis.
1439	The performance determination for annual TP load is composed of two parts:
1440	1. an Annual Load Target, and
1441	2. an Annual Load Limit.
1442	Since the performance determination contains two components that are applied
1443	simultaneously, the cumulative exceedance frequency for the method is greater than the
1444	exceedance frequencies of either of the individual components. An approximation of the
1445	cumulative exceedance frequency for the determination methodology was estimated using a
1446	Monte Carlo approach based on the annual rainfall and the annual TP loads of the Base
1447	Period. The general approach used is described below.
1448	1. A 10,000-year set of annual rainfall data was created that corresponded to the normal

1. A 10,000-year set of annual rainfall data was created that corresponded to the normal distribution described by the mean and standard deviation of the rainfall (or log-

1450	transformed rainfall if that transformation was used in the regression equation)
1451	observed during the Base Period. ⁵
1452	2. If the regression equation for the Annual Load Target included the rainfall coefficient
1453	of variation, skewness or kurtosis, similar 10,000-year sets of annual values were also
1454	created that corresponded to the normal distributions described by the respective
1455	mean and standard deviation of those parameters for the Base Period.
1456	3. If the performance determination method includes adjusted rainfall, a 10,000-year set
1457	of adjusted rainfall values was then generated.
1458	4. A 10,000-year set of annual residuals was then created that corresponded to the
1459	normal distribution described by the mean and standard deviation of the residuals
1460	observed by comparing the loads predicted using the regression equation and the
1461	actual loads during the Base Period.
1462	5. 10,000-year sets of Annual TP Load Targets and Annual Load Limits were then
1463	generated using the appropriate equations.
1464	6. A 10,000-year set of annual TP loads was generated by adding the calculated annual
1465	residual to the calculated Annual Load Target.
1466	7. The 10,000-year set of annual TP loads was then compared to the Annual Load
1467	Target and the Annual Load Limit, and the cumulative exceedance frequency was
1468	calculated.
1469	
1470	2.6.6 Strength and Defensibility
1471	
1472	For each basin an evaluation was conducted and derived by reviewing the data (gaps and
1473	revisions), assumptions made in performance measure development, the quantitative
1474	statistics (R ²), etc. All of the basins that had load based performance measures were ranked

1475 high or moderate for their overall technical strength and defensibility.

⁵ The Excel random number generator was used to populate the 10,000-year synthetic record of annual rainfall values, with the mean and standard deviation matching the Base Period values to within 0.01 inches.

1476	2.6.7 Regional Projects
1477	
1478	A description of existing and proposed regional projects can be found in the 2011 Lake
1479	Okeechobee Protection Plan Update (SFWMD 2011a). Performance measures methodologies
1480	will account for regional projects in a similar manner as in Chapter 40E-63, F.A.C.:
1481	 After completion of a regional project,
1482	• the basin's Annual Load Target will be reduced in proportion to the regional
1483	project acreage no longer contributing to basin runoff,
1484	o the basin's Annual Load Limit will be calculated using the Annual Load
1485	Target reduced as described above, and
1486	o the basin's Runoff Load will be adjusted to take into account the regional
1487	project's load reduction.
1488	Monitoring will be implemented at the inflow and/or outflow of the regional project,
1489	as needed to calculate the basin runoff load and the treatment occurring within the
1490	regional project.
1491	> The basin's Annual Load Target per unit area will be the same before and after
1492	completion of regional projects.
1493	
1494	Additional details regarding the algorithm to account for regional projects are presented in
1495	Appendix E.
1496	
1497	
1498	
1499	
1500	
1501	

1502 2.6.8 Annual Performance Determination 1503 1504 Hydrology, specifically discharge and rainfall, is a dominant factor when computing TP 1505 loads. Because rainfall and discharge are subject to large temporal and spatial variation in 1506 south Florida, the performance measure methodology adjusts the TP load for hydrologic 1507 variability. The adjustment for hydrologic variability includes two components: 1508 1509 1. A model to estimate future TP loads. The model estimates a future TP load from 1510 the Base Period rainfall characteristics by substituting future hydrologic conditions, 1511 i.e., during the Evaluation Year, for the conditions that occurred during the Base 1512 Period. This predicted future TP load is based on the regression equation described 1513 above, and is referred to as the Annual Load Target. 1514 1515 2. Accommodation for statistical error in the model. Statistical error in the model 1516 was accounted for by specifying a required level of statistical confidence in the 1517 prediction of the long-term average TP load. The upper 90 percent confidence limit 1518 was selected as reasonable, and is consistent with Chapter 40E-63, F.A.C. This upper 1519 confidence limit is referred to as the Annual Load Limit. 1520 1521 Total phosphorus runoff loads discharged at each basin's outlet structures, after accounting 1522 for pass-through loads and regional projects, will be assessed annually against the Annual 1523 Load Target and the Annual Load Limit, as described below: 1524 1525 > Annual Load Target: One in three year test. If a basin's performance is matching 1526 expectations the probability of the observed annual load being above the Annual Load 1527 Target is 50 percent for any given year. Given this assumption, the probability that 1528 the load is above the Target for three consecutive years is 12.5 percent (= 0.50×0.50

1529	x 0.50). In other words, at an 87.5 percent confidence level, we can infer that the
1530	basin achieves its long-term load reduction goal if the observed annual load does not
1531	exceed the Annual Load Target for three consecutive years. The use of a three-year
1532	cycle for the Annual Load Target is consistent with the District's Chapter 40E-63
1533	F.A.C., and has a theoretical Type I error (i.e., false positive) rate of 12.5 percent ⁶ .
1534	
1535	> Annual Load Limit. Consistent with the District's Chapter 40E-63 F.A.C., the
1536	Annual Load Limit was derived as the upper 90 percent confidence limit above the
1537	prediction equation for the Annual Load Target, with an associated theoretical Type I
1538	error rate of 10 percent. In deriving the upper 90 percent confidence limit on the
1539	Annual Load Target, the product of the appropriate t-statistic and an expression of the
1540	prediction's standard error (SE _p) is added to the Annual Load Target.
1541	
1542	The annual performance determination will be conducted using data collected by water year
1543	(May 1 through April 30) in accordance with the following steps:
1544	
1545	1. The Annual Load Target and Annual Load Limit will be calculated according to the
1546	basin-specific equations, described in Section 3.
1547	
1548	2. The Annual Load Target and Annual Load Limit may include an area adjustment
1549	factor to account for regional projects. Each basin's Runoff Load is determined as
1550	the annual observed discharge load less calculated pass-through load plus load
1551	reductions attributable to the regional project. Additional details regarding the
1552	calculations to account for regional projects are contained in Appendix E. System
1553	changes affecting the number or location of inflows and outflows, including regional

 $^{^{6}}$ The Type I error rate is the probability that the performance measure methodology will reject the null hypothesis (i.e., a determination that the TP load does not meet the performance measure) when in reality the null hypothesis is true – the annual load meets the performance measure, and is therefore also known as the false positive rate.

- projects, shall be reflected in updated Annual Load Target, Annual Load Limit, andRunoff Load calculations.
- 1556

- 1557 3. If the Runoff Load in the Evaluation Year is less than or equal to the Annual Load
 1558 Target, then the basin will be determined to have met its performance measure, that
 1559 is, it will have not exceeded the collective median annual phosphorus loading that
 1560 would have occurred during the Base Period, adjusted for hydrologic variability and
 1561 adjusted for the source control load reduction goal.
- 1563 4. Rainfall conditions will be assessed by comparing the Evaluation Year's rainfall 1564 amount to the range of rainfall observed during the Base Period. In those basins where the regression equation for the Annual Load Target includes more than one 1565 1566 predictor variable, an adjusted rainfall amount will be calculated which reflects the cumulative effect of the variables that comprise the load target equation. The annual 1567 performance determination will be suspended if the rainfall (or adjusted rainfall) for 1568 1569 the Evaluation Year is outside the range observed during the Base Period and the 1570 Runoff Load exceeds the Annual Load Target calculated above.
- 1571

1572 5. If the Runoff Load exceeds the Annual Load Target in three or more consecutive 1573 Evaluation Years, and if the annual performance determination is not suspended due 1574 to rainfall for the Evaluation Year, the basin will be determined to have not met its 1575 performance measure, that is, it will have exceeded the annual phosphorus loading 1576 that would be expected to occur during the Base Period, adjusted for hydrologic 1577 variability and adjusted for the source control load reduction goal. Any Evaluation 1578 Year for which the performance determination is suspended will be excluded from the 1579 determination of whether the Annual Load Target has been exceeded in three or more 1580 consecutive Evaluation Years.

1582	6. If the Runoff Load exceeds the Annual Load Limit in any Evaluation Year, and if the
1583	annual performance determination is not suspended due to rainfall for the Evaluation
1584	Year, the basin will be determined to have not met its performance measure, that is, it
	-
1585	will have exceeded the annual nutrient loading that would be expected to occur
1586	during the Base Period, adjusted for hydrologic variability and adjusted for the source
1587	control load reduction goal.
1588	
1589	These steps are depicted in Figure 1-2.
1590	
1591	
1592	
1592	
1593	
1594	
4505	
1595	
1596	
1000	
1597	
1598	
1599	
1399	
1600	
1601	
4000	
1602	

1603
 3. PERFORMANCE MEASURE METHODOLOGIES 1604
 FOR THE LAKE OKEECHOBEE WATERSHED

1606 The following sections describe the performance measure methodologies of basins within the1607 Lake Okeechobee Watershed.

- 1608 > Section 3.1: Taylor Creek-Nubbin Slough Sub-watershed
- 1609 > Section 3.2: Lower Kissimmee Sub-watershed
- 1610 > Section 3.3: East Lake Okeechobee Sub-watershed
- 1611 > Section 3.4: Indian Prairie Sub-watershed
- 1612 > Section 3.5: Fisheating Creek-Nicodemus Slough Sub-watershed
- 1613 > Section 3.6: Lake Istokpoga Sub-watershed
- 1614 > Section 3.7: West Lake Okeechobee Sub-watershed
- 1615 > Section 3.8: Upper Kissimmee Sub-watershed
- 1616 > Section 3.9: South Lake Okeechobee Sub-watershed
- 1617

- 1618 A summary of the major characteristics of the performance measure methodologies for the
- 1619 basins of the Lake Okeechobee Watershed is presented in Table 3-1.
- 1620
- 1621
- 1622
- 1623
- 1624
- 1625
- 1626
- 1020
- 1627

Table 3-1. Summary of Lake Okeechobee Watershed performance metrics.

Sub-watershed	Summary Basin or Hydrologic Unit	Base Period or Reference Period	Performance Metric	Pass - Through Loads?	Base Period or Reference Period Median Load, mt		Adjusted Rainfall in Performance Determination?
		-	-				-
Taylor Creek/Nubbin Slough	S-133	WY1977-1986	PM	No	7.366	25%	Yes
Taylor Creek/Nubbin Slough	S-154	WY1977-1984	PM	No	8.272	35%	No
Taylor Creek/Nubbin Slough	S-191	WY1977-1988	PM	No	149.511	40%	Yes
Lower Kissimmee Sub-	watershed	WY1977-1990	PM	Yes	56.061	30%	No
East Lake Okeechobee	C-44	WY2000-2010	PM	Yes	52.861	35%	Yes
East Lake Okeechobee	L-8	WY1995-2003	PM	Yes	17.134	20%	Yes
Indian Prairie Sub-watershed		WY1989-2001	PM	Yes	67.635	30%	Yes
Fisheating Creek/Nicodemus Slough	Fisheating Creek	WY1998-2008	PM	No	67.618	30%	No
Lake Istokpoga	Arbuckle Creek	WY1997-2007	PI	No	38.802	0%	No
Lake Istokpoga	Josephine Creek	WY1997-2004	PI	No	3.004	0%	No
Upper Kissimmee	Boggy Creek	WY2001-2008	PI	No	5.018	0%	Yes
Upper Kissimmee	Shingle Creek	WY1999-2007	PI	No	14.189	0%	Yes
West Lake Okeechobee	S-4 / Industrial Canal	WY1993-2001	PM	Yes	20.331	30%	Yes
West Lake Okeechobee	East Caloosahatchee	WY1982-1990	PM	Yes	54.939	30%	No

Notes:

- 1. PM = Performance Measure
 - PI = Performance Indicator
- 2. No performance metric will be assigned to the S-135, S-154C and Nicodemus Slough basins. However, the water quality from these basins will be assessed annually to determine if there is an increasing trend.
- 3. See Section 3.9 for a summary of the South Lake Okeechobee Sub-watershed performance measure metrics.

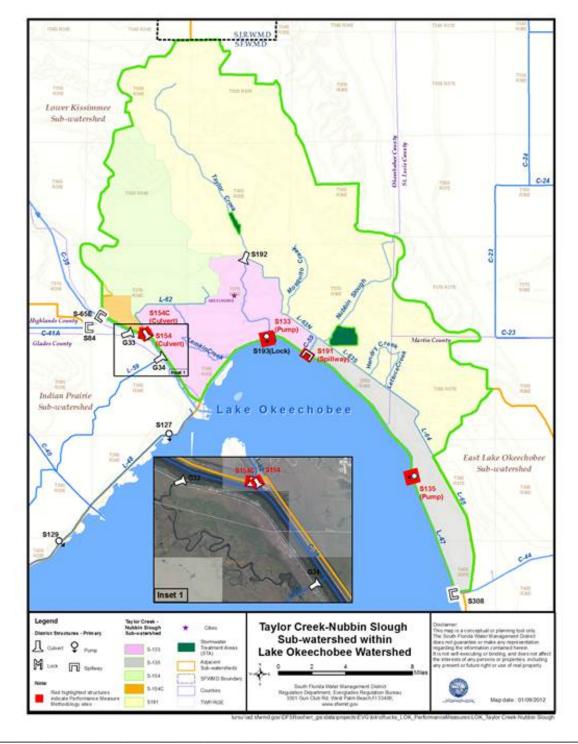
1648 3.1 Taylor Creek-Nubbin Slough Sub-watershed

1650 In total, the Taylor Creek-Nubbin Slough Sub-watershed comprises 196,733 acres located 1651 directly north of Lake Okeechobee, and includes the town of Okeechobee Florida (**Figure 3-**1652 1)⁷. The Taylor Creek-Nubbin Slough Sub-watershed is composed of 5 separate summary 1653 basins, S-191, S-135, S-133, S-154, and S-154C. Each of these basins has a distinct 1654 discharge point into Lake Okeechobee. Flow and water quality data from these stations were 1655 used to calculate the annual TP loads from each basin (flow and TP monitoring sites are 1656 identified in **Tables C-1** and **C-2**).

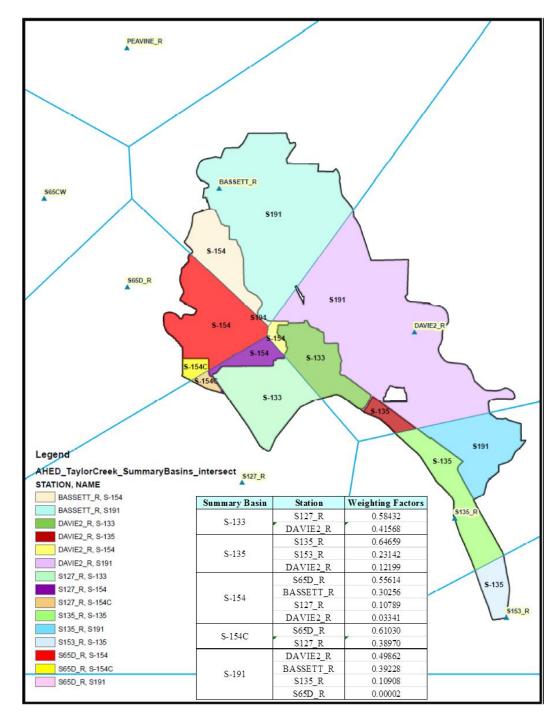
1657 District staff identified the rainfall stations considered to be representative of the Taylor 1658 Creek-Nubbin Slough Sub-watershed and associated basins for the period WY1976-2010. A 1659 schematic of the Taylor Creek-Nubbin Slough Sub-watershed with the various rain stations is 1660 presented in **Figure 3-2.** Monthly rainfall data and weighting factors for the rainfall stations 1661 for each basin were developed and provided by the District. Weighting factors are shown in 1662 **Figure 3-2** for the individual basins. Annual summaries of rainfall values for each basin are 1663 presented in the Sections 3.1.1 through 3.1.5.

1664 The following sections describe the derivation of the performance measure methodologies1665 for the basins within the Taylor Creek-Nubbin Slough Sub-watershed.

1666


- 1667
- 1668
- 1669
- 1670
- 1671

⁷ Areas used in this Technical Memorandum were calculated by the District; the areas vary somewhat from those reported in the March 2011 update to the Lake Okeechobee Protection Plan.


Figure 3-1. Taylor Creek-Nubbin Slough Sub-watershed boundary and discharge monitoring locations.

1675 Figure 3-2. Schematic of Taylor Creek-Nubbin Slough Sub-watershed, summary basins 1676 and selected rainfall stations.

3.1.1 S-133 Summary Basin

1680 The following sections present a description of the S-133 Summary Basin, a summary of 1681 historical flow and TP levels, the selection of a Base Period, an estimated range of load 1682 reductions attributable to collective source controls, and the derivation of the resulting 1683 performance measure.

1684 3.1.1.1 Background

1685

1686 The 25,626-acre S-133 Summary Basin discharges into Lake Okeechobee through pump 1687 station S-133. Annual flow and TP data for discharges from the S-133 Summary Basin into 1688 Lake Okeechobee are summarized in **Table 3-2.** For the development of the performance 1689 measure methodology, a Base Period of WY1977-1986 was selected for the following 1690 reasons.

- it represents a period with minimal implementation of source controls. With the
 selection of the Base Period to precede significant source control implementation, no
 additional calculation is necessary in the performance measure methodology to
 account for source control implementation.
- 1695 > basin water management operations were similar to current operating conditions
 1696 affecting nutrient loading,
- 1697 it represents a period of relatively constant land use practices,
- reliable water quality and hydrologic data are available which captures a
 representative range of hydrologic variability, and
- a strong correlation exists between annual TP loads and rainfall, allowing for a
 performance measure methodology that explicitly incorporates hydrologic variability.
- 1702

1703 The Base Period is compared to the historical period of record and WY2001-2010 in Table

- 1704 **3-3**. This comparison is provided to identify the differences between the Base Period annual
- 1705 rainfall, flows and TP levels compared to the entire period of record and compared to a

recent ten-year period. The implementation of source controls in a basin subsequent to the
Base Period should result in lower levels of TP when compared against both the period of
record and recent ten-year period.

1709

1710

1711

			FWM		Unit Area	Unit Area	Rainfall Characteristics		stics
Water	Flow	TP Load	TP Conc	Rainfall	Runoff	Load	Kurtosis	Coef. Of Var.	Skewness
Year	AF	mt	μg/L	inches	in/yr	lbs/ac	К	CV	S
1977	5,705	2.427	345	41.00	2.67	0.21	5.984	0.980	2.142
1978	7,333	3.088	341	46.56	3.43	0.27	-1.416	0.648	0.470
1979	22,227	9.306	339	47.05	10.41	0.80	1.854	0.778	1.314
1980	46,858	22.864	396	53.41	21.94	1.97	3.211	0.929	1.629
1981	12,579	5.426	350	34.60	5.89	0.47	-0.972	0.690	0.330
1982	0	0.000		48.32	0.00	0.00	-1.646	0.759	0.424
1983	59,383	23.346	319	63.58	27.81	2.01	-0.546	0.609	0.623
1984	40,512	16.948	339	46.52	18.97	1.46	-0.692	0.520	0.470
1985	26,981	18.829	566	37.24	12.63	1.62	1.276	0.831	0.931
1986	4,931	1.401	230	33.01	2.31	0.12	1.166	0.853	1.073
1987	15,864	4.766	244	51.29	7.43	0.41	0.417	0.782	0.838
1988	18,567	6.694	292	40.62	8.69	0.58	-0.183	0.636	0.786
1989	17,486	6.584	305	47.14	8.19	0.57	-0.457	0.835	0.662
1990	0	0.000		40.33	0.00	0.00	-0.425	0.668	0.216
1991	282	0.123	354	52.50	0.13	0.01	1.151	0.805	1.101
1992	27,334	8.363	248	44.59	12.80	0.72	-0.499	0.775	0.893
1993	53,151	19.526	298	52.87	24.89	1.68	3.446	1.028	1.726
1994	9,571	2.874	243	42.53	4.48	0.25	0.349	0.455	0.463
1995	42,218	9.083	174	55.72	19.77	0.78	0.312	0.430	0.410
1996	46,936	11.927	206	60.01	21.98	1.03	-1.344	0.851	0.400
1997	10,441	1.694	132	44.53	4.89	0.15	-0.560	0.777	0.663
1998	33,968	6.474	155	53.54	15.91	0.56	0.553	0.429	-1.065
1999	13,403	2.350	142	42.93	6.28	0.20	2.970	0.992	1.601
2000	27,491	7.506	221	48.73	12.87	0.65	2.278	0.960	1.306
2001	0	0.000		22.76	0.00	0.00	-1.175	1.006	0.636
2002	13,891	5.878	343	38.50	6.50	0.51	4.800	1.028	1.943
2003	14,013	5.853	339	44.91	6.56	0.50	4.150	0.922	1.786
2004	21,984	5.423	200	38.89	10.29	0.47	-0.543	0.739	0.793
2005	39,731	21.068	430	42.10	18.60	1.81	0.299	1.080	1.200
2006	46,255	17.829	312	48.00	21.66	1.53	1.148	0.859	0.973
2007	0	0.000		28.27	0.00	0.00	0.201	1.065	1.165
2008	0	0.000		39.70	0.00	0.00	-0.682	0.690	0.399
2009	16,128	10.728	539	34.04	7.55	0.92	3.756	1.414	1.946
2010	3,459	1.045	245	46.88	1.62	0.09	-0.790	0.717	0.532
Minimum	0	0.000	132	22.76	0.00	0.00	-1.646	0.429	-1.065
Average	20,549	7.630	301	44.49	9.62	0.66	0.806	0.810	0.905
Maximum	59,383	23.346	566	63.58	27.81	2.01	5.984	1.414	2.142
Std. Dev.	17,502	7.264	104	8.56	8.20	0.62	1.956	0.207	0.637
Skewness	0.632	0.923	0.713	-0.206	0.632	0.92	1.024	0.353	-0.344
Median	15,996	5.866	305	44.75	7.49	0.50	0.306	0.794	0.816

1713Table 3-3. Comparison of Base Period with period of record and WY2001-2010 data1714for S-133.

	Flow	TP Load	TP Conc	Rainfall	Unit Area				
Metric	AF	mt	μg/L	inches	Load, lbs/ac				
Period of Record - WY1977-2010									
Annual Minimum	0	0.000	132	22.76	0.00				
Annual Average	20,549	7.630	301	44.49	0.66				
Annual Median	15,996	5.866	305	44.75	0.50				
Annual Maximum	59,383	23.346	566	63.58	2.01				
Base Period WY1977-1986									
Annual Minimum	0	0.000	230	33.01	0.00				
Annual Average	22,651	10.364	371	45.13	0.89				
Annual Median	17,403	7.366	341	46.54	0.63				
Annual Maximum	59,383	23.346	566	63.58	2.01				
Differ	ence between	Period of Re	ecord and Ba	se Period					
Annual Minimum	0	0.000	-98	-10.25	0.00				
Annual Average	-2,101	-2.733	-70	-0.64	-0.24				
Annual Median	-1,407	-1.501	-36	-1.79	-0.13				
Annual Maximum	0	0.000	0	0.00	0.00				
Annual Minimum	N/A	N/A	-43%	-31%	N/A				
Annual Average	-9%	-26%	-19%	-1%	-26%				
Annual Median	-8%	-20%	-11%	-4%	-20%				
Annual Maximum	0%	0%	0%	0%	0%				
		WY2001-20)10						
Annual Minimum	0	0.000	200	22.76	0.00				
Annual Average	15,546	6.782	354	38.41	0.58				
Annual Median	13,952	5.638	339	39.30	0.49				
Annual Maximum	46,255	21.068	539	48.00	1.81				
	rence betwee	n WY2001-2	2010 and Bas	se Period					
Annual Minimum	0	0.000	-30	-10.25	0.00				
Annual Average	-7,105	-3.581	-17	-6.72	-0.31				
Annual Median	-3,451	-1.728	-2	-7.25	-0.15				
Annual Maximum	-13,128	-2.278	-27	-15.58	-0.20				
Annual Minimum	N/A	N/A	-13%	-31%	N/A				
Annual Average	-31%	-35%	-5%	-15%	-35%				
Annual Median	-20%	-23%	-1%	-16%	-23%				
Annual Maximum	-22%	-10%	-5%	-25%	-10%				

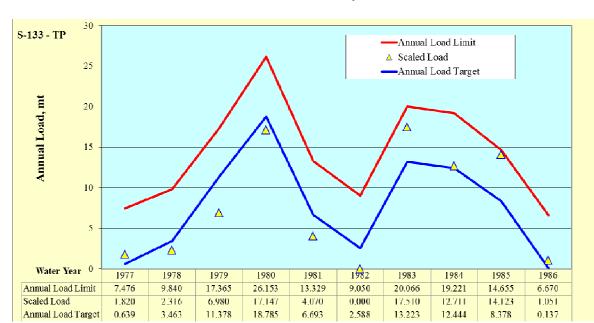
1718	3.1.1.2	Performance Measure Methodology
1719 1720	Based on	the evaluation of individual land use source control effectiveness ranges described
1721		n 2.6, the overall range of TP load reduction that could be accomplished through
1722		e source controls within the basin was estimated, and a load reduction target of 25
1723		vas determined to be reasonable and appropriate. Details are provided in Appendix
1724	-	Attachment 1.
1725		
1726	An Annu	al Load Target and an Annual Load Limit were derived from the Base Period data
1727	using a 2	5 percent load reduction. The Annual Load Target and Annual Load Limit will
1728	be calcula	ated according to the following equations and explanation:
1729		
1730	Target =	-200.98003 + 19.638 X + 29.41568 P + 30.52657 C
1731	Ez	xplained Variance = 79.1%, Standard Error of Regression = 3.885 mt
1732	Pı	redictors (X a n d C) are calculated from the first two
1733	m	oments (m_1, m_2) of the 12 monthly rainfall totals $(r_i, i=1 \text{ to } 12,$
1734	in	ches) for the Evaluation Year:
1735	m	$r_1 = Sum [r_i] / 12$
1736	m	$_{2} = \text{Sum} [r_{i} - m_{1}]^{2} / 12$
1737	Х	$= \ln (12 m_1)$
1738	С	$= [(12/11) m_2]^{0.5}/m_1$
1739	Limit = T	Target + 1.43976 SE
1740	SI	E = standard error of the Target for May-April interval
1741	SI	$E = 3.88541 [1 + 1/10 + 3.01635 (X-X_m)^2 + 4.00198 (P-P_m)^2 + 10.51972 (C-C_m)^2 +$
1742		$0.38068 (X-X_m) (P-P_m) + 2.9188 (X-X_m) (C-C_m) + 8.67534 (P-P_m) (C-C_m)]^{0.5}$
1743	Where:	
1744	Х	= the natural logarithm of the 12-month total rainfall (ln[inches])

- P = the natural logarithm of the rainfall for the previous water year (ln[inches])
 C = coefficient of variation calculated from 12 monthly rainfall totals
- 1747 X_m = average value of the predictor in base period = 3.79116
- 1748 P_m = average value of the predictor in base period = 3.77727
- 1749 C_m = average value of the predictor in base period = 0.75970
- 1750

1751 In general, the use of the previous year's rainfall as a predictor variable was avoided due to 1752 concerns of collinearity between rainfall and the previous year's rainfall⁸. Consistent with 1753 the guidance of Section 2.6, collinearity was checked for the Target equation above, and 1754 determined to be not a problem, in that there was no statistically significant correlation 1755 between annual rainfall and prior year's rainfall.

1756

1757 The first and second predictors (X and P) indicate that load increases with total annual 1758 rainfall and total annual previous year's rainfall. The third predictor (C) indicates that the 1759 load resulting from a given annual rainfall is higher when the distribution of monthly 1760 rainfall has higher variability. For a given annual rainfall, the lowest load occurs when 1761 rainfall is evenly distributed across months and the highest load occurs when all of the rain 1762 falls in one month. Real cases fall in between.


1763

A comparison of the scaled loads, i.e., the observed Base Period loads reduced by the recommended 25 percent load reduction, at S-133 and the resulting Targets and Limits for the Base Period are presented in **Figure 3-3.** Annual TP loads at S-133, adjusted to account for regional projects (if applicable), will be evaluated against the performance measure described above.

⁸ In the case of the S-133 Summary Basin, the highest adjusted R^2 for a regression equation that did not contain prior year as a predictor variable was only 23 percent.

Figure 3-3. Comparison of scaled annual loads to the Annual Load Targets and Limits for the S-133 Summary Basin.

1771 1772

1774 Suspension of Performance Determination. The performance determination will be 1775 1776 suspended due to rainfall conditions if the observed annual TP load, adjusted for regional 1777 projects (if present), at S-133 exceeds the Annual Load Target and the adjusted rainfall falls 1778 outside the range of adjusted rainfall values for the Base Period (30.03 - 77.63 inches), as 1779 derived below. Rainfall conditions will be assessed by calculating an adjusted rainfall 1780 amount which reflects the cumulative effect of the predictor variables of the Annual Load 1781 Target equation. The adjusted rainfall is the rainfall that would produce the equivalent 1782 annual load using the Annual Load Target equation by setting the value of P and C to their 1783 mean values for the calibration period.

1784

1773

1785 Adjusted Rainfall = exp
$$[X + 1.49790 (P - 3.77727) + 1.55446 (C - 0.75970)]$$

1786

1787 The calculated adjusted rainfall values, Annual Load Targets and Annual Load Limits for the1788 rainfall conditions observed during the WY1977-2010 period of record are summarized in

1789 Table 3-4. The annual performance determination process will account for regional projects,

1791

1792

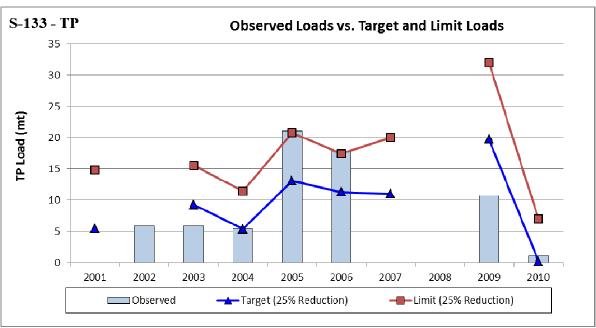
- 1793
- 1794

Table 3-4. Estimates of Annual Load Targets and Limits for the historical period of
record for the S-133 Summary Basin (Base Period: WY1977-1986).

Water	Observed	Observed	CV	Target	Limit	Adjusted
Year	Load, mt	Rain, in		Load, mt	Load, mt	Rain, in
1977	2.427	41.00	0.980	0.639	7.476	30.81
1978	3.088	46.56	0.648	3.463	9.839	35.58
1979	9.306	47.05	0.778	11.378	17.364	53.24
1980	22.864	53.41	0.929	18.785	26.153	77.63
1981	5.426	34.60	0.690	6.693	13.328	41.94
1982	0.000	48.32	0.759	2.588	9.049	34.03
1983	23.346	63.58	0.609	13.223	20.066	58.48
1984	16.948	46.52	0.520	12.444	19.221	56.21
1985	18.829	37.24	0.831	8.378	14.654	45.70
1986	1.401	33.01	0.853	0.137	6.670	30.03
1987	4.766	51.29	0.782	3.077	9.753	34.89
1988	6.694	40.62	0.636	7.003	13.234	42.61
1989	6.584	47.14	0.835	9.141	15.157	47.50
1990	0.000	40.33	0.668	5.357	11.486	39.18
1991	0.123	52.50	0.805	10.129	16.307	49.96
1992	8.363	44.59	0.775	13.764	20.049	60.11
1993	19.526	52.87	1.028	20.028	28.211	82.70
1994	2.874	42.53	0.455	3.273	10.687	35.23
1995	9.083	55.72	0.430	1.413	9.821	32.05
1996	11.927	60.01	0.851	23.667	31.584	99.54
1997	1.694	44.53	0.777	17.731	24.706	73.57
1998	6.474	53.54	0.429	1.950	10.104	32.94
1999	2.350	42.93	0.992	20.220	28.557	83.51
2000	7.506	48.73	0.960	15.235	22.255	64.79
2001	0.000	22.76	1.006	5.417	14.862	39.30
2002	5.878	38.50	1.028	-5.983	1.980	21.99
2003	5.853	44.91	0.922	9.268	15.570	47.81
2004	5.423	38.89	0.739	5.385	11.411	39.24
2005	21.068	42.10	1.080	13.119	20.773	58.17
2006	17.829	48.00	0.859	11.281	17.456	52.97
2007	0.000	28.27	1.065	11.031	19.977	52.30
2008	0.000	39.70	0.690	-9.321	-0.929	18.55
2009	10.728	34.04	1.414	19.748	32.019	81.53
2010	1.045	46.88	0.717	0.231	6.987	30.18

1795 1796 1797

Note: Shaded water years indicate the performance determination would have been suspended due to anomalous rainfall coupled with the observed load being greater than the Load Target.



as applicable, and is presented in the flowchart in **Figure 1-2**.

- 1798 **Comparison to WY2001-2010.** A comparison of the loads observed during WY2001-2010
- 1799 to the Annual Load Targets and Limits is presented in Figure 3-4.
- 1800

1801 Figure 3-4. Comparison of WY2001-2010 observed loads to the Annual Load Targets 1802 and Limits for the S-133 Summary Basin.

804 805

Note: The performance determination for WY2002 and WY2008) would have been suspended due to the 1806 adjusted rainfall being below the minimum value during the Base Period coupled with the observed load being 1807 greater than the Load Target. 1808

1809 Exceedance Frequency Analysis. As shown in Figure 3-3, although the scaled observed 1810 loads fall above the Annual Load Target roughly half the time (five out of nine years, or 55 1811 percent), three of these exceedances occur in successive years. In accordance with the proposed performance determination process discussed in Section 2.6, three successive years 1812 1813 when the observed load exceeds the Annual Load Target would prevent the basin from 1814 meeting its performance measure. In the case of the scaled Base Period data, this is an example of a Type I error⁹, or "false positive" - when the performance method suggests a 1815

The Type I error rate is the probability that the performance measure methodology will reject the null hypothesis (i.e., a determination that the TP load does not meet the performance measure) when in reality the

1816 lack of compliance when the basin's load actually achieves the long-term reduction goals. 1817 While this occurrence is not common, it is statistically possible. The use of a three-year 1818 cycle for the Annual Load Target is consistent with the District's Chapter 40E-63 F.A.C., and 1819 has a theoretical Type I error (i.e., false positive) rate of 12.5 percent. Using the approach 1820 described in Section 2.6, an approximation of the cumulative exceedance frequency for the 1821 determination methodology was estimated using a Monte Carlo approach based on the annual 1822 rainfall and the annual TP loads of the Base Period (Table 3-5). Because the TP loads and 1823 rainfall statistics from the Base Period do not perfectly describe normal distributions (e.g., 1824 the medians are generally less than the means), the methodology includes conditional 1825 probabilities, and because the random number generator is imperfect, the exceedance 1826 frequencies deviate from the theoretical values shown in the second column. However, the results are determined to be reasonable and defensible since the cumulative exceedance 1827 1828 frequency is less than the theoretical value of approximately 17.5 percent.

1829

Table 3-5. Exceedance frequencies for the proposed determination methodology for the
 S-133 Summary Basin.

Component of Performance Assessment	Theoretical Exceedance	Method Exceedance
	Frequency	Frequency
Step 1. Load > Annual Load Target?	50%	50%
Step 2. Suspend assessment if Rain _{adj} is outside the range and Load > Annual Load Target	<20%	12.1%
Step 3. Load > Annual Load Target for 3 consecutive years?	<12.5%	8.8%
Step 4. Load > Annual Load Limit?	<10%	1.8%
Cumulative Exceedance Frequency	<17.5%	10.1%

1833 1834

null hypothesis is true – the annual load meets the performance measure, and is therefore also known as the false positive rate.

1835 1836	3.1.2 S-135 Summary Basin
1837	The following sections present a description of the S-135 Summary Basin and a summary of
1838	historical flow and TP levels.
1839 1840	3.1.2.1 Background
1841	The 17,756-acre S-135 Summary Basin discharges into Lake Okeechobee through pump
1842	station S-135. Annual flow and TP data for discharges from the S-135 Summary Basin into
1843	Lake Okeechobee are summarized in Table 3-6.
1844	
1845	3.1.2.2 Performance Measure Methodology
1846 1847	Since this summary basin has historically contributed a small percentage of the annual Lake
1848	Okeechobee total phosphorus load (approximately one percent), no performance metric will
1849	be assigned to this area. However, the water quality from this basin will be assessed annually
1850	to determine if there is an increasing trend.
1851	
1852 1853	
1854	
1855	
1856	
1857	
1858	
1859	
1860	
1861	
1862	

1863 Table 3-6. Summary of historical data for S-135 for the WY 1977-2010 period of record.

1864	
------	--

			FWM		Unit Area	Unit Area	Rainfall Characteristics		stics
Water	Flow	TP Load	TP Conc	Rainfall	Runoff	Load	Kurtosis	Coef. Of Var.	Skewness
Year	AF	mt	μg/L	inches	in/yr	lbs/ac	К	CV	S
1977	7,666	0.681	72	48.49	5.18	0.08	1.288	0.872	1.135
1978	7,323	0.650	72	46.37	4.95	0.08	1.159	0.640	1.225
1979	27,191	2.415	72	43.08	18.38	0.30	-0.209	0.641	0.218
1980	59,966	15.862	214	53.70	40.53	1.97	4.326	1.076	1.985
1981	10,816	0.950	71	38.82	7.31	0.12	-0.143	0.859	0.994
1982	0	0.000		43.77	0.00	0.00	-0.241	0.931	0.904
1983	36,351	3.459	77	54.85	24.57	0.43	1.946	0.635	1.228
1984	38,937	4.393	91	51.04	26.31	0.55	-0.624	0.547	0.425
1985	16,550	1.720	84	40.38	11.18	0.21	0.619	0.810	0.749
1986	5,629	0.843	121	38.65	3.80	0.10	1.245	0.973	1.286
1987	21,669	1.931	72	53.44	14.64	0.24	0.236	0.800	0.904
1988	17,891	2.036	92	47.04	12.09	0.25	-1.065	0.569	-0.003
1989	15,725	1.667	86	38.87	10.63	0.21	-0.215	0.786	0.633
1990	0	0.000		45.84	0.00	0.00	0.356	0.911	0.959
1991	180	0.024	108	49.11	0.12	0.00	-1.409	0.619	-0.047
1992	15,133	1.729	93	47.89	10.23	0.21	2.449	0.792	1.606
1993	43,194	6.146	115	61.04	29.19	0.76	4.584	0.930	1.783
1994	18,096	1.432	64	42.35	12.23	0.18	0.070	0.533	0.154
1995	39,209	4.781	99	49.10	26.50	0.59	-0.636	0.498	0.165
1996	47,512	8.553	146	56.97	32.11	1.06	-1.142	0.828	0.304
1997	11,155	1.095	80	40.51	7.54	0.14	-0.804	0.605	0.404
1998	26,941	2.671	80	40.62	18.21	0.33	-0.714	0.523	-0.195
1999	17,151	1.769	84	30.93	11.59	0.22	-1.166	0.772	0.578
2000	26,669	4.489	136	37.00	18.02	0.56	-1.261	0.778	0.300
2001	0	0.000		25.21	0.00	0.00	-1.048	0.953	0.639
2002	5,781	0.577	81	31.33	3.91	0.07	-1.252	0.869	0.702
2003	20,373	2.254	90	38.01	13.77	0.28	-0.795	0.663	0.645
2004	32,078	2.699	68	37.32	21.68	0.34	1.274	0.879	1.324
2005	30,473	10.087	268	42.28	20.59	1.25	0.696	0.990	1.168
2006	42,394	8.745	167	46.42	28.65	1.09	4.259	1.065	1.784
2007	0	0.000		26.47	0.00	0.00	0.020	0.927	0.971
2008	0	0.000		35.12	0.00	0.00	0.406	0.642	0.760
2009	10,511	3.321	256	31.19	7.10	0.41	3.015	1.104	1.600
2010	10,613	0.595	45	50.13	7.17	0.07	-1.352	0.686	0.269
Minimum	0	0.000	45	25.21	0.00	0.00	-1.409	0.498	-0.195
Average	19,505	2.870	119	43.04	13.18	0.36	0.408	0.785	0.810
Maximum	59,966	15.862	268	61.04	40.53	1.97	4.584	1.104	1.985
Std. Dev.	15,867	3.471	55	8.56	10.72	0.43	1.680	0.171	0.566
Skewness	0.660	2.146	1.905	-0.118	0.660	2.15	1.220	0.029	0.252
Median	16,851	1.749	86	42.72	11.39	0.22	-0.062	0.796	0.755

- -

1869

3.1.3 S-154 Summary Basin

1873 The following sections present a description of the S-154 Summary Basin, a summary of 1874 historical flow and TP levels, the selection of a Base Period, an estimated range of load 1875 reductions attributable to collective source controls, and the derivation of the resulting 1876 performance measure.

1877

1878 3.1.3.1 Background

1879

The 31,815-acre S-154 Summary Basin discharges into Lake Okeechobee through S-154.
Annual flow and TP data for discharges from the S-154 Summary Basin into Lake
Okeechobee are summarized in Table 3-7. For the development of the performance measure
methodology, a Base Period of WY1977-1984 was selected for the following reasons:

- it represents a period with minimal implementation of source controls. With the
 selection of the Base Period to precede significant source control implementation, no
 additional calculation is necessary in the performance measure methodology to
 account for prior source control implementation.
- 1888 > basin water management operations were similar to current operating conditions
 1889 affecting nutrient loading,
- 1890 \succ it represents a period of relatively constant land use practices,
- 1891 it traversed a wide range of hydrologic conditions (wet and dry years),
- Monthly and annual flow for Water Year 1983 (May 1982 April 1983) were higher than during the other years, however, no individual month was identified as a potential outlier. Similarly, the TP concentrations for WY1983 were relatively high, yet no outliers were detected. The combination of high flows and high concentrations resulted in relatively high monthly loads for this period as well.

1899

Table 3-7. Summary of historical data for S-154.

1900

			FWM		Unit Area	Unit Area	Ra	infall Characteri	stics
Water	Flow	TP Load	TP Conc	Rainfall	Runoff	Load	Kurtosis	Coef. Of Var.	Skewness
Year	AF	mt	μg/L	inches	in/vr	lbs/ac	K	CV	S
1977	6,185	1.093	143	37.82	2.33	0.08	1.024	0.935	1.173
1978	10,946	6.453	478	39.21	4.13	0.45	-1.299	0.599	0.194
1979	47,160	25.106	432	46.19	17.79	1.74	2.016	0.774	1.323
1980	44,896	37.800	683	52.55	16.93	2.62	3.975	0.956	1.871
1981	4,659	2.977	518	30.06	1.76	0.21	0.955	0.890	1.091
1982	5,605	6.663	964	42.01	2.11	0.46	-0.949	0.812	0.426
1983	116,218	149.667	1,044	56.20	43.84	10.37	-0.872	0.572	0.422
1984	8,521	9.880	940	42.03	3.21	0.68	-0.290	0.574	0.519
1985	19,319	23.612	991	36.13	7.29	1.64	4.210	0.954	1.618
1986	14,142	12.701	728	32.18	5.33	0.88	-1.141	0.660	0.455
1987	39,927	53.714	1,091	45.90	15.06	3.72	-1.080	0.659	0.185
1988	30,730	42.574	1,123	48.99	11.59	2.95	0.950	0.609	0.534
1989	7,786	7.786	811	42.13	2.94	0.54	-0.482	0.631	0.231
1990	19,243	23.787	1,002	42.20	7.26	1.65	-0.345	0.809	0.603
1991	10,958	14.526	1,075	52.89	4.13	1.01	-0.735	0.670	0.385
1992	23,280	24.308	847	46.11	8.78	1.68	0.018	0.873	0.925
1993	26,185	25.192	780	48.63	9.88	1.75	2.736	0.967	1.421
1994	4,301	2.089	394	41.23	1.62	0.14	-0.961	0.403	-0.571
1995	36,619	23.949	530	56.25	13.81	1.66	-0.536	0.524	0.851
1996	19,328	26.028	1,092	52.38	7.29	1.80	-1.451	0.782	0.343
1997	437	0.351	651	37.01	0.16	0.02	-1.068	0.599	0.023
1998	48,869	43.391	720	55.98	18.43	3.01	0.106	0.420	-0.873
1999	7,917	7.621	780	32.78	2.99	0.53	0.271	0.741	0.712
2000	79,204	82.860	848	55.01	29.87	5.74	7.101	1.147	2.337
2001	173	0.116	544	27.22	0.07	0.01	0.050	1.129	0.912
2002	22,411	24.815	898	42.46	8.45	1.72	-1.373	0.851	0.562
2003	13,165	8.244	508	41.92	4.97	0.57	1.287	0.589	1.200
2004	27,033	17.816	534	40.91	10.20	1.23	0.630	0.737	0.933
2005	56,536	65.602	941	49.61	21.32	4.55	0.233	1.014	1.024
2006	49,216	36.142	595	47.72	18.56	2.50	2.634	1.016	1.477
2007	547	0.323	479	21.59	0.21	0.02	-0.892	0.988	0.822
2008	91	0.025	223	34.74	0.03	0.00	-0.397	0.675	0.371
2009	37,837	40.845	875	42.72	14.27	2.83	2.638	1.192	1.635
2010	13,119	10.123	626	54.80	4.95	0.70	-1.047	0.665	0.028
Minimum	91	0.025	143	21.59	0.03	0.00	-1.451	0.403	-0.873
Average	25,075	25.241	816	43.40	9.46	1.75	0.468	0.777	0.740
Maximum	116,218	149.667	1,123	56.25	43.84	10.37	7.101	1.192	2.337
Std. Dev.	25,002	29.601	257	8.77	<i>9.43</i>	2.05	1.924	0.204	0.663
Skewness	1.817	2.588	-0.341	-0.424	1.817	2.59	1.690	0.241	0.019
Median	19,281	20.714	754	42.33	7.27	1.44	-0.136	0.758	0.658

1902 > reliable water quality and hydrologic data are available, and

a strong correlation exists between annual TP loads and rainfall, allowing for a
 performance measure methodology that explicitly incorporates hydrologic variability.

performance measure methodology that explicitly incorporates hydrologic variability.

1905 The Base Period is compared to the historical period of record and WY2001-2010 in **Table**

1906 3-8.

1907 1908

Table 3-8. Comparison of Base Period with period of record data for S-154.

	Flow	TP Load	TP Conc	Rainfall	Unit Area
Metric	AF	mt	μg/L	inches	Load, lbs/ac
		Record - WY		mene s	Load, 105/ac
Annual Minimum	91	0.025	143	21.59	0.00
Annual Average	25,075	25.241	816	43.40	1.75
Annual Median	19,281	20.714	754	42.33	1.44
Annual Maximum	116,218	149.667	1,123	56.25	10.37
	Base P	eriod WY197	7-1984		
Annual Minimum	4,659	1.093	143	30.06	0.08
Annual Average	30,524	29.955	796	43.26	2.08
Annual Median	9,734	8.272	601	42.02	0.57
Annual Maximum	116,218	149.667	1,044	56.20	10.37
Differ	ence between	Period of Rec	ord and Base	Period	
Annual Minimum	-4,568	-1.068	0	-8.47	-0.07
Annual Average	-5,448	-4.714	20	0.14	-0.33
Annual Median	9,548	12.443	154	0.31	0.86
Annual Maximum	0	0.000	79	0.05	0.00
Annual Minimum	-98%	-98%	0%	-28%	-98%
Annual Average	-18%	-16%	3%	0%	-16%
Annual Median	98%	150%	26%	1%	150%
Annual Maximum	0%	0%	8%	0%	0%
	,	WY2001-201	0		-
Annual Minimum	91	0.025	223	21.59	0.00
Annual Average	22,013	20.405	751	40.37	1.41
Annual Median	17,788	13.970	570	42.19	0.97
Annual Maximum	56,536	65.602	941	54.80	4.55
		n WY2001-20		Period	
Annual Minimum	-4,568	-1.068	80	-8.47	-0.07
Annual Average	-8,511	-9.550	-44	-2.89	-0.66
Annual Median	8,055	5.698	-31	0.17	0.39
Annual Maximum	-59,682	-84.065	-103	-1.40	-5.83
Annual Minimum	-98%	-98%	56%	-28%	-98%
Annual Average	-28%	-32%	-6%	-7%	-32%
Annual Median	83%	69%	-5%	0%	69%
Annual Maximum	-51%	-56%	-10%	-2%	-56%

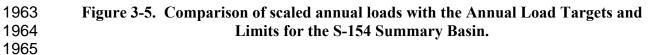
1910	3.1.3.2	Performance Measure Methodology
1911 1912	Based on	the evaluation of individual land use source control effectiveness ranges described
1913		n 2.6, the overall range of TP load reduction that could be accomplished through
1914	collective	e source controls within the basin was estimated, and a load reduction target of 35
1915	percent v	vas determined to be reasonable and appropriate. Details are provided in Appendix
1916	D and in	Attachment 1.
1917		
1918	An Annu	al Load Target and an Annual Load Limit were derived from the Base Period data
1919	using a 3	5 percent load reduction. The Annual Load Target and Annual Load Limit will
1920	be calcul	ated according to the following equations and explanation:
1921		
1922	Target =	$= \exp(-5.20573 + 0.16556 \text{ X})$
1923	E	xplained Variance = 80.1% , Standard Error of Regression ¹⁰ = 0.74134
1924	P	redictor X is calculated from the first moment (m_1) of the 12 monthly rainfall
1925	tc	tals (r_i , i=1 to 12, inches) for the Evaluation Year:
1926	m	$r_1 = Sum [r_i] / 12$
1927	Х	$= 12 m_1$
1928	Limit =	Target * exp (1.43976 SE)
1929	S	E = standard error of the predicted ln(Load) for May-April
1930		interval
1931	S	$E = 0.74134 \left[1 + 1/8 + (X-X_m)^2 / 485.64409 \right]^{0.5}$
1932		
1933	Where:	
1934	Х	= the 12-month total rainfall (inches)
1935	Х	m = average value of the predictor in base period = 43.2588 inches

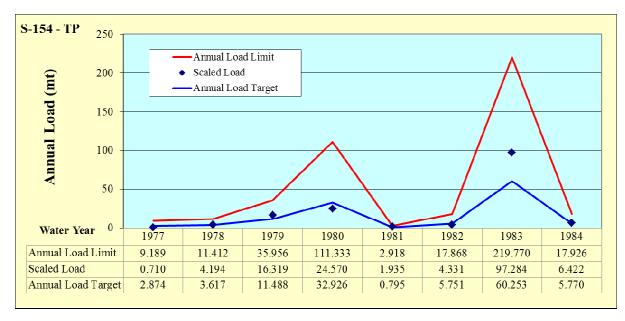
 $^{^{10}}$ The standard error of the regression equation is expressed in the same units as the transformed load, i.e., ln(metric tons).

1937 The predictor X indicates that the load increases exponentially with total annual rainfall. A 1938 comparison of the scaled loads and the resulting Targets and Limits for the Base Period are 1939 presented in Figure 3-5. Annual TP loads at S-154, adjusted to account for regional 1940 projects (if applicable), will be evaluated against the performance measure described above.

1941

Suspension of Performance Determination. The performance determination will be suspended due to rainfall conditions if the observed annual TP load, adjusted for regional projects (if present), at S-154 exceeds the Annual Load Target and the rainfall falls outside the range of rainfall values for the Base Period (30.06 – 56.20 inches). The calculated Annual Load Targets and Annual Load Limits for the rainfall conditions observed during the WY1977-2010 period of record are summarized in Table 3-9.

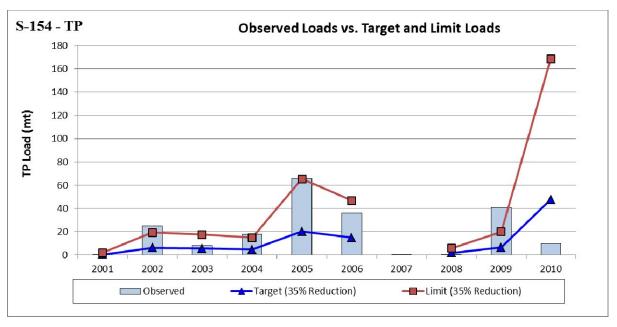

1948


1949 The annual performance determination process will account for regional projects, as1950 applicable, and is presented in the flowchart in Figure 1-2.

- 1951
- 1952
- 1953
- 1954
- 1955
- 1956
- 1957
-
- 1958
- 1959
- 1960
- 1961
- 1962

Table 3-9. Estimates of Annual Load Targets and Limits for the historical period of record for the S-154 Summary Basin (Base Period: WY1977-1984).

Water	Observed	Rain	Target	Limit
Year	Load, mt	in	Load, mt	Load, mt
1977	1.093	37.82	2.874	9.189
1978	6.453	39.21	3.617	11.412
1979	25.106	46.19	11.488	35.956
1980	37.800	52.55	32.926	111.332
1981	2.977	30.06	0.795	2.918
1982	6.663	42.01	5.751	17.868
1983	149.667	56.20	60.252	219.768
1984	9.880	42.03	5.770	17.926
1985	23.612	36.13	2.172	7.095
1986	12.701	32.18	1.130	3.954
1987	53.714	45.90	10.950	34.213
1988	42.574	48.99	18.263	58.587
1989	7.786	42.13	5.866	18.221
1990	23.787	42.20	5.934	18.431
1991	14.526	52.89	34.832	118.509
1992	24.308	46.11	11.337	35.466
1993	25.192	48.63	17.206	54.975
1994	2.089	41.23	5.054	15.745
1995	23.949	56.25	60.753	221.856
1996	26.028	52.38	32.012	107.917
1997	0.351	37.01	2.513	8.112
1998	43.391	55.98	58.097	210.824
1999	7.621	32.78	1.248	4.314
2000	82.860	55.01	49.478	175.677
2001	0.116	27.22	0.497	1.961
2002	24.815	42.46	6.195	19.232
2003	8.244	41.92	5.665	17.608
2004	17.816	40.91	4.793	14.954
2005	65.602	49.61	20.237	65.410
2006	36.142	47.72	14.800	46.860
2007	0.323	21.59	0.196	0.916
2008	0.025	34.74	1.726	5.758
2009	40.845	42.72	6.468	20.070
2010	10.123	54.80	47.787	168.906


1985 Note: Shaded water years indicate the performance determination would have been suspended due to anomalous rainfall coupled with the observed load being greater than the Load Target.

- 1987 Comparison to WY2001-2010. A comparison of the loads observed during WY2001-2010
- 1988 to the Annual Load Targets and Limits is presented in Figure 3-6.
- 1989

1990Figure 3-6. Comparison of WY2001-2010 observed loads to the Annual Load Targets1991and Limits for the S-154 Summary Basin.

1993

1994 Note: The performance determination for WY2007 would have been suspended due to rainfall below the minimum value during the Base Period coupled with the observed load being greater than the Load Target.
1996

1997 Exceedance Frequency Analysis. Using the approach described in Section 2.6, an 1998 approximation of the cumulative exceedance frequency for the determination methodology 1999 was estimated using a Monte Carlo approach based on the annual rainfall and the annual TP 2000 loads of the Base Period (Table 3-10). Because the TP loads and rainfall statistics from the 2001 Base Period do not perfectly describe normal distributions (e.g., the medians are generally 2002 less than the means), the methodology includes conditional probabilities, and because the random number generator is imperfect, the exceedance frequencies deviate from the 2003 2004 theoretical values shown in the second column. However, the results are determined to be

reasonable and defensible since the cumulative exceedance frequency is less than thetheoretical value of approximately 17.5 percent.

2008Table 3-10. Exceedance frequencies for the proposed determination methodology for2009the S-154 Summary Basin.2010

Component of Performance Assessment	Theoretical Exceedance Frequency	Method Exceedance Frequency
Step 1. Load > Annual Load Target?	50%	50%
Step 2. Suspend assessment if Radj is outside the range and Load > Annual Load Target	<20%	5.6%
Step 3. Load > Annual Load Target for 3 consecutive years?	<12.5%	11.0%
Step 4. Load > Annual Load Limit?	<10%	4.0%
Cumulative Exceedance Frequency	<17.5%	13.9%

3.1.4 S-154

3.1.4 S-154C Summary Basin

2029 The following sections present a description of the S-154C Summary Basin and a summary2030 of historical flow and TP levels.

2031

2027 2028

2032 3.1.4.1 Background

The S-154C Summary Basin consists of 2,134 acres of predominantly improved pasture. A single discharge structure (S-154C) located in the southeast corner of the basin conveys stormwater runoff from the basin into Lake Okeechobee approximately 3 miles downstream of S-65E and approximately 5 miles upstream of the State Road 78 bridge over the Kissimmee River. Flow and TP data collection began at S-154C in July 2008. Monthly summaries are provided in **Table 3-11** for a portion WY2009 and WY2010.

2039

2041

2040 3.1.4.2 Performance Measure Methodology

Since this summary basin has historically contributed a small percentage of the annual Lake Okeechobee total phosphorus load (less than one percent), no performance metric will be assigned to this area. However, the water quality from the basin will be assessed annually to determine if there is an increasing trend.

- 2046
- 2047
- 2048
- 2049
- 2050
- 2051
- 2052
- 2053
- 2054

Table 3-11. Summary of historical flow and TP data for S-154C.

Month	Flow	TP Load	TP Conc
	AF	kg	μg/L
200807	277	200	585
200808	1,588	2,546	1,300
200809	697	563	655
200810	385	156	328
200811	123	57	376
200812	119	51	347
200901	44	18	332
200902	0	0	
200903	0	0	
200904	0	0	
200905	0	0	
200906	274	88	260
200907	446	230	418
200908	115	75	529
200909	91	59	526
200910	81	37	370
200911	65	24	299
200912	1	0	
201001	20	13	527
201002	110	81	597
201003	872	754	701
201004	317	295	754
Average	256	239	524
Flow-weight	ed mean TI	P Conc.	756
Geometric n	iean TP Co	nc.	481
Median	113	58	526
Std Dev	378	550	250

2067

3.1.5 S-191 Summary Basin

2068 The following sections present a description of the S-191 Summary Basin, a summary of 2069 historical flow and TP levels, the selection of a Base Period, an estimated range of load 2070 reductions attributable to collective source controls, and the derivation of the resulting 2071 performance measure.

2072 3.1.5.1 **Background**

2073

2074 The 119,402-acre S-191 Summary Basin discharges into Lake Okeechobee through S-191. 2075 Annual flow and TP data observed at S-191 are summarized in Table 3-12. For the 2076 development of the performance measure methodology, a Base Period of WY1977-1988 was 2077 selected for the following reasons:

- 2078 \succ it represents a period with minimal implementation of source controls. With the 2079 selection of the Base Period to precede significant source control implementation, no 2080 additional calculation is necessary in the performance measure methodology to 2081 account for prior source control implementation.
- 2082 > basin water management operations were similar to current operating conditions 2083 affecting nutrient loading, with the exception of recent regional projects. The 2084 proposed performance measure methodology accounts for the influence of these 2085 regional projects on basin loads.
- > it represents a period of relatively constant land use practices, 2086
- 2087 it traversed a wide range of hydrologic conditions (wet and dry years),
- 2088 • Monthly and annual flow for Water Year 1980 (May 1979 – April 1979) were 2089 relatively higher than during the other years due to tropical storm activity. 2090 The TP concentrations for WY1980 were also relatively high, yet no outliers 2091 were detected. The combination of high flows and high concentrations 2092 resulted in relatively high monthly loads for this period as well.

- 2093 reliable water quality and hydrologic data are available, and
- 2094 > a very strong correlation exists between annual TP loads and rainfall, allowing for a
 2095 performance measure methodology that explicitly incorporates hydrologic variability.
- 2096
- 2097
- 2098

Table 3-12. Summary of historical data for S-191.

			FWM		Unit Area	Unit Area	Rainfall Characteristics		stics
Water	Flow	TP Load	TP Conc	Rainfall	Runoff	Load	Kurtosis	Coef. Of Var.	Skewness
Year	AF	mt	μg/L	inches	in/yr	lbs/ac	К	CV	S
1977	157,712	185.092	951	44.62	15.85	3.42	-0.399	0.836	0.736
1978	123,421	156.780	1,030	48.24	12.40	2.89	-0.487	0.557	0.561
1979	147,602	176.433	969	51.94	14.83	3.26	0.161	0.628	0.772
1980	195,007	239.196	994	54.82	19.60	4.42	5.312	1.038	2.104
1981	44,844	51.039	923	35.01	4.51	0.94	3.245	0.817	1.379
1982	107,623	183.556	1,383	45.02	10.82	3.39	-0.318	0.853	0.668
1983	206,721	204.033	800	63.58	20.78	3.77	-0.464	0.536	0.544
1984	77,818	78.301	816	44.54	7.82	1.45	-1.004	0.555	0.135
1985	51,376	66.775	1,054	36.55	5.16	1.23	2.362	0.850	1.178
1986	78,395	85.978	889	35.74	7.88	1.59	0.665	0.757	0.938
1987	139,706	142.242	825	44.10	14.04	2.63	-0.375	0.795	0.794
1988	61,889	57.785	757	41.09	6.22	1.07	-0.340	0.592	0.145
1989	47,010	42.844	739	40.23	4.72	0.79	-1.151	0.686	0.298
1990	61,061	63.274	840	46.43	6.14	1.17	0.482	0.893	0.916
1991	121,462	100.327	670	48.43	12.21	1.85	-1.668	0.640	-0.140
1992	76,465	52.372	555	48.97	7.68	0.97	-1.308	0.784	0.513
1993	158,297	127.422	653	59.51	15.91	2.35	3.033	0.944	1.529
1994	38,590	20.648	434	45.01	3.88	0.38	-0.771	0.415	-0.165
1995	173,986	120.673	562	56.64	17.49	2.23	-0.332	0.520	0.425
1996	169,688	144.982	693	60.78	17.05	2.68	-1.499	0.838	0.314
1997	34,195	20.554	487	42.78	3.44	0.38	-1.145	0.678	0.451
1998	126,309	85.797	551	53.69	12.69	1.58	-0.804	0.490	-0.393
1999	61,962	48.313	632	31.08	6.23	0.89	-0.532	0.706	0.711
2000	150,747	143.699	773	55.00	15.15	2.65	5.709	1.173	2.158
2001	13,557	11.290	675	25.52	1.36	0.21	-0.694	1.096	0.850
2002	87,642	77.970	721	47.49	8.81	1.44	7.429	1.178	2.424
2003	85,497	74.273	704	47.65	8.59	1.37	0.767	0.748	1.109
2004	89,666	71.207	644	37.94	9.01	1.31	1.022	0.816	1.185
2005	167,369	148.557	720	48.22	16.82	2.74	1.499	1.047	1.390
2006	187,800	143.248	618	51.80	18.87	2.64	1.510	1.008	1.228
2007	17,850	13.564	616	30.26	1.79	0.25	0.637	1.031	1.161
2008	23,960	15.683	531	37.56	2.41	0.29	-0.689	0.690	0.358
2009	98,634	77.643	638	33.55	9.91	1.43	5.621	1.214	2.106
2010	52,899	30.585	469	48.36	5.32	0.56	-1.358	0.680	0.022
Minimum	13,557	11.290	434	25.52	1.36	0.21	-1.668	0.415	-0.393
Average	101,081	95.945	770	45.36	10.16	1.77	0.709	0.797	0.835
Maximum	206,721	239.196	1,383	63.58	20.78	4.42	7.429	1.214	2.424
Std. Dev.	55,813	60.831	198	9.05	5.61	1.12	2.328	0.211	0.690
Skewness	0.240	0.507	1.038	-0.111	0.240	0.51	1.521	0.306	0.557
Median	88,654	78.136	712	45.73	8.91	1.44	-0.336	0.790	0.754

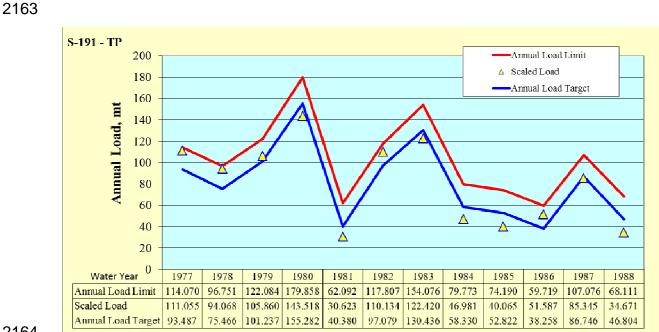
The Base Period is compared to the historical period of record and WY2001-2010 in Table **3-13.** The median WY2001-2010 annual load was approximately 51 percent lower than the
Base Period, reflecting the effectiveness of source controls already implemented in this basin.

- 2103
- 2104
- 2105

Table 3-13. Comparison of Base Period with period of record data for S-191.

	Flow	TP Load	TP Conc	Rainfall	Unit Area
Metric	AF	mt	μg/L	inches	Load, lbs/ac
	Period of	Record - WY			,
Annual Minimum	13,557	11.290	434	25.52	0.21
Annual Average	101,081	95.945	770	45.36	1.77
Annual Median	88,654	78.136	712	45.73	1.44
Annual Maximum	206,721	239.196	1,383	63.58	4.42
	Base I	Period WY19'	77-1988		
Annual Minimum	44,844	51.039	757	35.01	0.94
Annual Average	116,010	135.601	948	45.44	2.50
Annual Median	115,522	149.511	937	44.58	2.76
Annual Maximum	206,721	239.196	1,383	63.58	4.42
Differ	rence betweer	Period of Red	cord and Bas	e Period	
Annual Minimum	-31,287	-39.749	-323	-9.49	-0.73
Annual Average	-14,928	-39.656	-178	-0.08	-0.73
Annual Median	-26,868	-71.376	-225	1.15	-1.32
Annual Maximum	0	0.000	0	0.00	0.00
Annual Minimum	-70%	-78%	-43%	-27%	-78%
Annual Average	-13%	-29%	-19%	0%	-29%
Annual Median	-23%	-48%	-24%	3%	-48%
Annual Maximum	0%	0%	0%	0%	0%
		WY2001-201	10		
Annual Minimum	13,557	11.290	469	25.52	0.21
Annual Average	82,487	66.402	653	40.84	1.23
Annual Median	86,570	72.740	641	42.72	1.34
Annual Maximum	187,800	148.557	721	51.80	2.74
Diffe	rence betwee	n WY2001-20)10 and Base	Period	
Annual Minimum	-31,287	-39.749	-288	-9.49	-0.73
Annual Average	-33,522	-69.199	-295	-4.60	-1.28
Annual Median	-28,953	-76.771	-296	-1.86	-1.42
Annual Maximum	-18,921	-90.639	-662	-11.78	-1.67
Annual Minimum	-70%	-78%	-38%	-27%	-78%
Annual Average	-29%	-51%	-31%	-10%	-51%
Annual Median	-25%	-51%	-32%	-4%	-51%
Annual Maximum	-9%	-38%	-48%	-19%	-38%

2107	3.1.5.2	Performance Measure Methodology
2108 2109	Based on	the evaluation of individual land use source control effectiveness ranges described
2110		a 2.6, the overall range of TP load reduction that could be accomplished through
2111	collective	source controls within the basin was estimated, and a load reduction target of 40
2112	percent w	as determined to be reasonable and appropriate. Details are provided in Appendix
2113	D and in A	Attachment 1.
2114		
2115	An Annua	al Load Target and an Annual Load Limit were derived from the Base Period data
2116	using a 40) percent load reduction. The Annual Load Target and Annual Load Limit will
2117	be calcula	ted according to the following equations and explanation:
2118		
2119	Target =	-692.35612 + 210.9038 X + 84.89757 C
2120	Ex	plained Variance = 89.4%, Standard Error of Regression = 13.995 mt
2121	Pr	edictors (X a n d C) are calculated from the first two moments (m_1, m_2)
2122	m ₂) of the 12 monthly rainfall totals (r_i , i=1 to 12, inches) for the Evaluation
2123	Ye	ear:
2124	m	$r_{i} = Sum [r_{i}] / 12$
2125	m_2	$_{2} = \text{Sum} [r_{i} - m_{1}]^{2} / 12$
2126	X	$= \ln (12 m_1)$
2127	C	$= \ln \{ [(12/11) m_2]^{0.5} / m_1 \}$
2128	Limit = T	arget + 1.38303 SE
2129	SE	E = standard error of the Target for May-April interval
2130	SE	$E = 13.99487 \left[1 + 1/12 + 3.1233 (X-X_m)^2 + 2.11893 (C-C_m)^2 + \right]$
2131		$1.54068 (X-X_m) (C-C_m)]^{0.5}$
2132	Where:	
2133	X	= the natural logarithm of the 12-month total rainfall (ln(inches))



2134	C = is the natural logarithm of the coefficient of variation calculated from 12
2135	monthly rainfall totals
2136	X_m = average value of the predictor in base period = 3.80143
2137	C_m = average value of the predictor in base period = -0.33003
2138	
2139	The first predictor (X) indicates that load increases with total annual rainfall. The second
2140	predictor (C) indicates that the load resulting from a given annual rainfall is higher when
2141	the distribution of monthly rainfall has higher variability. For a given annual rainfall, the
2142	lowest load occurs when rainfall is evenly distributed across months and the highest load
2143	occurs when all of the rain falls in one month. Real cases fall in between.
2144	
2145	A comparison of the scaled loads and the resulting Targets and Limits for the Base Period
2146	is presented in Figure 3-7. Annual TP loads at S-191, adjusted to account for regional
2147	projects, will be evaluated against the performance measure described above.
2148	
2149	
2150	
2151	
2152	
2153	
2154	
2155	
2156	
2157	
2158	
2159	
2160	

2161 Figure 3-7. Comparison of scaled annual loads with the Annual Load Targets and 2162 Limits for the S-191 Summary Basin.

2164

2165

2166 Suspension of Performance Determination. The performance determination will be 2167 suspended due to rainfall conditions if the observed annual TP load, adjusted for regional 2168 projects, at S-191 exceeds the Annual Load Target and the adjusted rainfall falls outside the 2169 range of adjusted rainfall values for the Base Period (36.49 - 63.56 inches), as derived below. Rainfall conditions will be assessed by calculating an adjusted rainfall amount which 2170 2171 reflects the cumulative effect of the predictor variables that make up the Annual Load Target 2172 equation. The adjusted rainfall is the rainfall that would produce the equivalent annual load 2173 using the Annual Load Target equation by setting the value of C to its mean value for the 2174 calibration period.

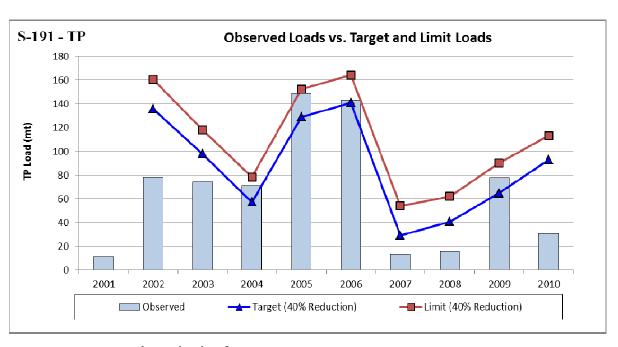
2175

2176 Adjusted Rainfall = exp [X + 0.40254 (C + 0.33003)]

- The calculated adjusted rainfall values, Annual Load Targets and Annual Load Limits for the WY1977-2010 period of record are summarized in **Table 3-14**. The annual performance determination process will account for regional projects, as applicable, and is presented in the flowchart in **Figure 1-2**.
- 2182
- 2183 2184
- 2185

Table 3-14. Estimates of annual Load Targets and Limits for the historical period of record for the S-191 Summary Basin (Base Period: WY1977-1988).

Water	Observed	Observed	CV	Target	Limit	Adjusted
Year	Load, mt	Rain, in		Load, mt	Load, mt	Rain, in
1977	185.092	44.62	0.836	93.487	114.070	47.41
1978	156.780	48.24	0.557	75.466	96.751	43.53
1979	176.433	51.94	0.628	101.237	122.084	49.19
1980	239.196	54.82	1.038	155.281	179.857	63.56
1981	51.039	35.01	0.817	40.381	62.092	36.86
1982	183.556	45.02	0.853	97.079	117.807	48.23
1983	204.033	63.58	0.536	130.436	154.076	56.49
1984	78.301	44.54	0.555	58.330	79.772	40.13
1985	66.775	36.55	0.850	52.822	74.191	39.10
1986	85.978	35.74	0.757	38.258	59.719	36.49
1987	142.242	44.10	0.795	86.746	107.075	45.92
1988	57.785	41.09	0.592	46.805	68.112	38.00
1989	42.844	40.23	0.686	54.856	75.443	39.48
1990	63.274	46.43	0.893	107.473	128.670	50.67
1991	100.327	48.43	0.640	88.087	108.545	46.22
1992	52.372	48.97	0.784	107.655	128.288	50.71
1993	127.422	59.51	0.944	164.535	189.119	66.41
1994	20.648	45.01	0.415	35.865	61.238	36.08
1995	120.673	56.64	0.520	103.486	126.067	49.72
1996	144.982	60.78	0.838	158.876	182.561	64.65
1997	20.554	42.78	0.678	66.822	87.132	41.78
1998	85.797	53.69	0.490	87.160	109.984	46.01
1999	48.313	31.08	0.706	2.872	26.656	30.85
2000	143.699	55.00	1.173	166.352	192.883	66.98
2001	11.290	25.52	1.096	-1.359	26.565	30.24
2002	77.970	47.49	1.178	135.750	160.657	57.93
2003	74.273	47.65	0.748	97.901	118.226	48.42
2004	71.207	37.94	0.816	57.228	78.169	39.93
2005	148.557	48.22	1.047	128.959	152.211	56.10
2006	143.248	51.80	1.008	140.840	164.291	59.35
2007	13.564	30.26	1.031	29.381	54.018	34.99
2008	15.683	37.56	0.690	40.866	62.017	36.94
2009	77.643	33.55	1.214	65.020	90.197	41.43
2010	30.585	48.36	0.680	92.929	113.247	47.29


2186

2187 Note: Shaded water years indicate the performance determination would have been suspended due to anomalous rainfall coupled with the observed load being greater than the Load Target.

- 2189 Comparison to WY2001-2010. A comparison of the loads observed during WY2001-2010
- to the Annual Load Targets and Limits is presented in **Figure 3-8**.
- 2191
- 2192
- 2193 2194
- Figure 3-8. Comparison of WY2001-2010 observed loads to the Annual Load Targets and Limits for the S-191 Summary Basin.

Note: The performance determination for WY2001 would have been suspended due to adjusted rainfall below the minimum value during the Base Period coupled with the observed load being greater than the Load Target.

2199 Exceedance Frequency Analysis. Using the approach described in Section 2.6, an 2200 approximation of the cumulative exceedance frequency for the determination methodology 2201 was estimated using a Monte Carlo approach based on the annual rainfall and the annual TP 2202 loads of the Base Period (Table 3-15). Because the TP loads and rainfall statistics from the 2203 Base Period do not perfectly describe normal distributions (e.g., the medians are generally 2204 less than the means), the methodology includes conditional probabilities, and because the 2205 random number generator is imperfect, the exceedance frequencies deviate from the 2206 theoretical values shown in the second column. However, the results are determined to be

- reasonable and defensible since the cumulative exceedance frequency is less than thetheoretical value of approximately 17.5 percent.

 Table 3-15. Exceedance frequencies for the proposed determination methodology for the S-191 Summary Basin.

Component of Performance Assessment	Theoretical Exceedance Frequency	Method Exceedance Frequency
Step 1. Load > Annual Load Target?	50%	50%
Step 2. Suspend assessment if Rain _{adj} is outside the range and Load > Annual Load Target	<20%	8.0%
Step 3. Load > Annual Load Target for 3 consecutive years?	<12.5%	10.2%
Step 4. Load > Annual Load Limit?	<10%	4.2%
Cumulative Exceedance Frequency	<17.5%	13.4%

2228 3.2 Lower Kissimmee Sub-watershed

The following sections present a description of the Lower Kissimmee Sub-watershed, a summary of historical flow and TP levels, the selection of a Base Period, an estimated range of load reductions attributable to collective source controls, and the derivation of the resulting performance measure.

2234 3.2.1.1 Background

2235 2236 The Upper and Lower Kissimmee Sub-watersheds comprise the Kissimmee River Basin, which includes most of the area that drains into Lake Okeechobee from the north and 2237 2238 northwest through the Kissimmee River (C-38 canal). The 429,188-acre Lower Kissimmee 2239 Sub-watershed includes the tributary watersheds of the Kissimmee River that lie between the 2240 outlet from Lake Kissimmee and the inlet to Lake Okeechobee. The S-65 sub-basins (S-65A, 2241 S-65BC, S-65D, and S-65E) are located along the length of the C-38 canal and form four 2242 pools (Figure 3-9). Structure S-65B was removed as a part of the first phase of Kissimmee 2243 River Restoration Project and reduced the number of pools from five to four. Water levels in 2244 each of the pools are regulated according to interim regulation schedules. Monitoring stations 2245 are located at each S-65 structure (at the downstream boundary of each sub-basin) and at 2246 station S-65, which is at the outlet from Lake Kissimmee to the Kissimmee River. The S-65 2247 structures are gated spillways and locks that are operated to enhance the natural resources of 2248 the river floodplain and to provide flood protection within their respective sub-basins and the 2249 Upper Kissimmee River Basin. Discharge monitoring locations are shown in Figure 3-9 and 2250 listed in Tables C-1 and C-2.

2251

District staff identified the rainfall stations considered to be representative of the Lower
Kissimmee Sub-watershed for the period WY1976-2010. Rainfall stations are shown in
Figure 3-10 with their associated Theissen polygons and weighting factors. In order to
separate discharges originating in the upstream Upper Kissimmee Sub-watershed, pass-

- through loads are estimated by comparing daily discharges from S-65 to the flows at the
- 2257 outlet structure S-65E (Appendix A).
- 2258
- 2259

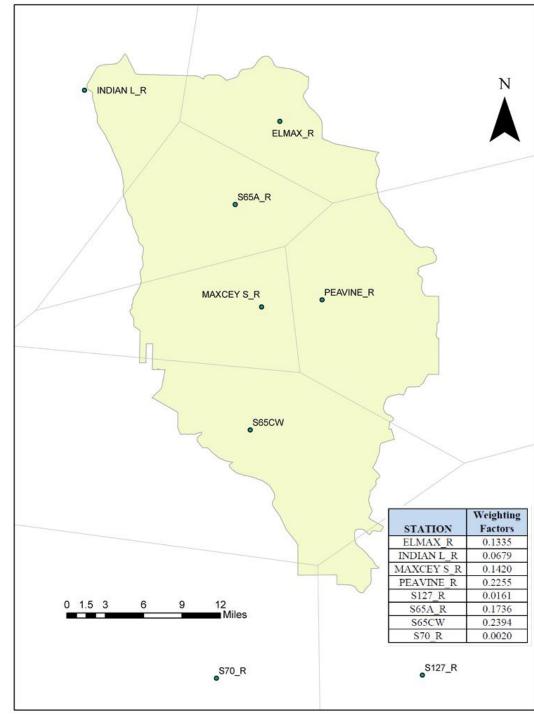

Figure 3-9. Lower Kissimmee Sub-watershed boundary and discharge monitoring locations.

Figure 3-10. Schematic of Lower Kissimmee Sub-watershed and the selected rainfall
 stations.

.

Annual flow and TP data for discharges from the Lower Kissimmee Sub-watershed into Lake Okeechobee are summarized in **Table 3-16.** For the development of the performance measure methodology, a Base Period of WY1977-1990 was selected for the following reasons:

- it represents a period with minimal implementation of source controls. With the
 selection of the Base Period to precede significant source control implementation, no
 additional calculation is necessary in the performance measure methodology to
 account for prior source control implementation.
- 2272 \rightarrow it represents a period of relatively constant land use practices,
- 2273 it traversed a wide range of hydrologic conditions (wet and dry years),
- Monthly and annual flow and TP levels for Water Year 1980 (May 1979 –
 April 1979) were relatively higher than during the other years due to tropical storm activity.
- 2278 > a strong correlation exists between annual TP loads and rainfall, allowing for a
 2279 performance measure methodology that explicitly incorporates hydrologic variability.
- 2280

2281 The Base Period is compared to the historical period of record and WY2001-2010 in Table

- **2282 3-17.**
- 2284 2285 2286

- 2287
- 2288
- 2289 2290
- 2291
- 2292
- 2293 2294
- 2295

2296
2297

Table 3-16. Summary of historical data for the Lower Kissimmee Sub-watershed.

			FWM		Unit Area	Unit Area	Rainfall Characteristics		stics
Water	Flow	TP Load	TP Conc	Rainfall	Runoff	Load	Kurtosis	Coef. Of Var.	Skewness
Year	AF	mt	μg/L	inches	in/yr	lbs/ac	К	CV	S
1977	413,364	60.731	119	51.72	11.56	0.31	-1.733	0.884	0.476
1978	242,506	29.763	99	47.79	6.78	0.15	-0.497	0.553	-0.033
1979	679,833	146.321	174	59.10	19.01	0.75	0.847	0.737	1.071
1980	631,914	157.288	202	55.96	17.67	0.81	1.053	0.807	1.307
1981	91,591	19.994	177	39.33	2.56	0.10	-0.276	0.707	0.336
1982	99,717	31.589	257	45.05	2.79	0.16	-1.290	0.675	0.261
1983	851,549	197.316	188	61.84	23.81	1.01	-1.535	0.526	-0.038
1984	80,459	37.387	377	43.25	2.25	0.19	-0.057	0.565	0.572
1985	211,885	79.258	303	41.71	5.92	0.41	-0.999	0.747	0.405
1986	136,112	43.588	260	43.05	3.81	0.22	-0.594	0.794	0.910
1987	244,506	100.068	332	47.04	6.84	0.51	2.710	0.748	1.275
1988	372,249	129.497	282	55.94	10.41	0.67	0.243	0.649	0.512
1989	100,602	34.449	278	43.14	2.81	0.18	0.232	0.577	0.809
1990	122,723	51.390	339	47.96	3.43	0.26	-0.944	0.648	0.238
1991	257,169	73.414	231	51.37	7.19	0.38	-0.201	0.616	0.297
1992	341,430	118.047	280	52.11	9.55	0.61	1.545	0.831	1.171
1993	353,751	87.536	201	62.62	9.89	0.45	1.678	0.825	1.365
1994	110,516	15.485	114	49.07	3.09	0.08	-0.777	0.469	0.192
1995	555,041	138.797	203	67.55	15.52	0.71	-1.149	0.481	0.581
1996	470,881	71.604	123	56.39	13.17	0.37	-0.235	0.806	0.719
1997	160,921	8.174	41	47.24	4.50	0.04	-0.542	0.735	0.824
1998	683,024	178.028	211	82.31	19.10	0.91	-0.764	0.377	-0.438
1999	223,967	44.198	160	47.91	6.26	0.23	0.543	0.918	1.174
2000	425,118	148.916	284	60.11	11.89	0.76	-1.359	0.788	0.425
2001	54,838	10.543	156	39.14	1.53	0.05	-0.288	1.109	0.884
2002	419,512	68.369	132	47.01	11.73	0.35	-1.355	0.762	0.476
2003	593,953	116.200	159	63.32	16.61	0.60	0.262	0.745	0.873
2004	608,979	104.848	140	50.31	17.03	0.54	0.282	0.838	1.053
2005	526,704	47.038	72	59.74	14.73	0.24	2.161	0.913	1.430
2006	651,415	26.793	33	61.15	18.21	0.14	-1.427	0.770	0.156
2007	86,663	24.679	231	32.72	2.42	0.13	-0.551	0.906	0.961
2008	75,414	16.480	177	44.16	2.11	0.08	2.482	0.712	1.140
2009	434,150	120.876	226	44.53	12.14	0.62	0.631	1.274	1.404
2010	243,614	43.948	146	54.00	6.81	0.23	-1.842	0.630	-0.117
Minimum	54,838	8.174	33	32.72	1.53	0.04	-1.842	0.377	-0.438
Average	339,884	75.959	181	51.64	9.50	0.39	-0.110	0.739	0.667
Maximum	851,549	197.316	377	82.31	23.81	1.01	2.710	1.274	1.430
Std. Dev.	222,855	52.862	84	9.77	6.23	0.27	1.203	0.177	0.488
Skewness	0.478	0.630	0.096	0.852	0.478	0.63	0.771	0.648	-0.227
Median	299,300	64.550	195	49.69	8.37	0.33	-0.282	0.746	0.650

Gary Goforth, Inc. February 2013

 Table 3-17. Comparison of Base Period with period of record data for Lower

 Kissimmee Sub-watershed.

Mater	Flow	TP Load	TP Conc	Rainfall	Unit Area					
Metric	AF	mt	μg/L	inches	Load, lbs/ac					
Period of Record - WY1977-2010										
Annual Minimum	54,838	8.174	33	32.72	0.04					
Annual Average	339,884	75.959	181	51.64	0.39					
Annual Median	299,300	64.550	195	49.69	0.33					
Annual Maximum	851,549	197.316	377	82.31	1.01					
	Base Period WY1977-1990									
Annual Minimum	80,459	19.994	99	39.33	0.10					
Annual Average	305,644	79.903	212	48.78	0.41					
Annual Median	227,196	56.061	259	47.42	0.29					
Annual Maximum	851,549	197.316	377	61.84	1.01					
Differ	ence between	Period of Red	cord and Bas	e Period						
Annual Minimum	-25,621	-11.820	-66	-6.61	-0.06					
Annual Average	34,241	-3.944	-31	2.86	-0.02					
Annual Median	72,104	8.489	-64	2.28	0.04					
Annual Maximum	0	0.000	0	20.47	0.00					
Annual Minimum	-32%	-59%	-67%	-17%	-59%					
Annual Average	11%	-5%	-15%	6%	-5%					
Annual Median	32%	15%	-25%	5%	15%					
Annual Maximum	0%	0%	0%	33%	0%					
		WY2001-201	10							
Annual Minimum	54,838	10.543	33	32.72	0.05					
Annual Average	369,524	57.977	127	49.61	0.30					
Annual Median	426,831	45.493	151	48.66	0.23					
Annual Maximum	651,415	120.876	231	63.32	0.62					
Diffe	Difference between WY2001-2010 and Base Period									
Annual Minimum	-25,621	-9.451	-66	-6.61	-0.05					
Annual Average	63,881	-21.925	-85	0.83	-0.11					
Annual Median	199,636	-10.568	-108	1.25	-0.05					
Annual Maximum	-200,134	-76.440	-146	1.48	-0.39					
Annual Minimum	-32%	-47%	-67%	-17%	-47%					
Annual Average	21%	-27%	-40%	2%	-27%					
Annual Median	88%	-19%	-42%	3%	-19%					
Annual Maximum	-24%	-39%	-39%	2%	-39%					

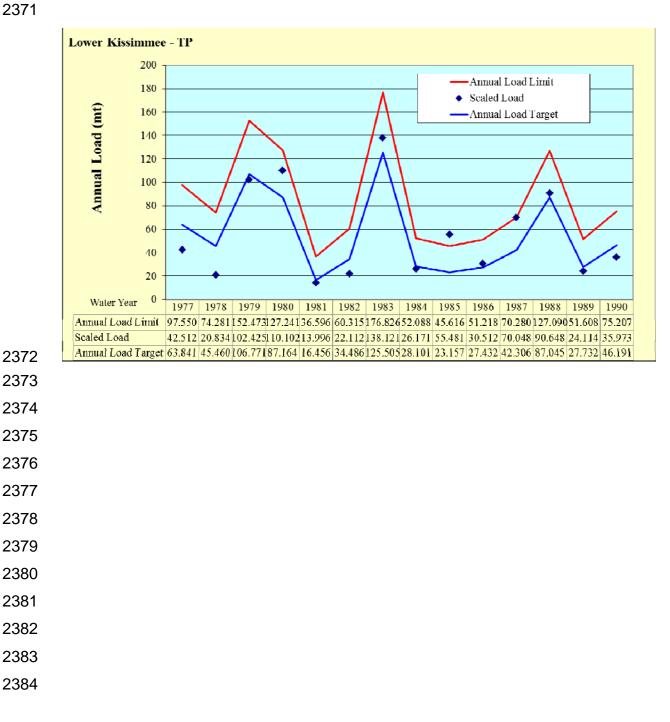
Performance Measure Methodology 2311 3.2.1.2 2312 2313 Based on the evaluation of individual land use source control effectiveness ranges described 2314 in Section 2.6, the overall range of TP load reduction that could be accomplished through 2315 collective source controls within the basin was estimated, and a load reduction target of 30 2316 percent was determined to be reasonable and appropriate. Details are provided in Appendix 2317 D and in Attachment 1. 2318 2319 An Annual Load Target and an Annual Load Limit were derived from the Base Period data 2320 using a 30 percent load reduction. The Annual Load Target and Annual Load Limit for the 2321 Lower Kissimmee Sub-watershed will be calculated according to the following 2322 equations and explanation: 2323 Target = $[-8.42963 + 0.31747 \text{ X}]^2$ 2324 Explained Variance = 75.1%, Standard Error of Regression¹¹ = 1.335572325 2326 Predictor X is calculated from the first moment (m_1) of the 12 monthly rainfall 2327 totals (r_i , i=1 to 12, inches) for the Evaluation Year: 2328 $m_1 = Sum [r_i] / 12$ 2329 $X = 12 m_1$ $Limit = [sqrt(Target) + (1.35622 SE)]^{2}$ 2330 2331 SE = standard error of the predicted sqrt(Load) for May-April 2332 interval SE = $1.33557 [1 + 1/14 + (X-X_m)^2 / 641.63129]^{0.5}$ 2333 2334 Where: X = the 12-month total rainfall (inches) 2335 2336 X_m = average value of the predictor in base period = 48.7771 inches

¹¹ The standard error of the regression equation is expressed in the same units as the transformed load, i.e., sqrt(metric tons).

- 2338 The predictor X indicates that load increases with total annual rainfall.

A comparison of the scaled loads and the resulting Targets and Limits for the Base Period are presented in **Figure 3-11**. Annual TP loads at S-65E, adjusted to account for passthrough loads as described in Appendix A and regional projects (if applicable), will be evaluated against the performance measure described above.

Suspension of Performance Determination. The performance determination will be
suspended due to rainfall conditions if the observed annual TP load for the sub-watershed,
adjusted for regional projects (if present), exceeds the Annual Load Target and the rainfall
falls outside the range of observed rainfall values for the Base Period (39.33 – 61.84 inches).
The calculated Annual Load Targets and Annual Load Limits for the rainfall conditions
observed during the WY1977-2010 period of record are summarized in Table 3-18.


- The annual performance determination process will account for pass-through loads andregional projects, as applicable, and is presented in the flowchart in Figure 1-2.

2369Figure 3-11. Comparison of scaled annual loads with the Annual Load Targets and
Limits for the Lower Kissimmee Sub-watershed.23702370

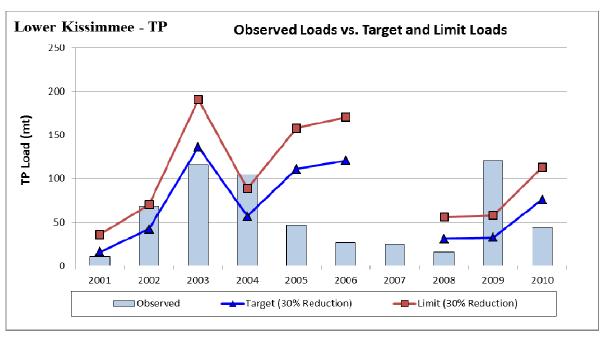
Table 3-18. Estimates of annual Load Targets and Limits for the historical period of record for the Lower Kissimmee Sub-watershed (Base Period: WY1977-1984).

Water	Observed	Observed Rain Target		Limit
Year	Load, mt	inches	Load, mt	Load, mt
1977	60.731	51.72	63.841	97.550
1978	29.763	47.79	45.460	74.281
1979	146.321	59.10	106.771	152.473
1980	157.288	55.96	87.164	127.241
1981	19.994	39.33	16.456	36.596
1982	31.589	45.05	34.486	60.315
1983	197.316	61.84	125.505	176.826
1984	37.387	43.25	28.101	52.088
1985	79.258	41.71	23.157	45.616
1986	43.588	43.05	27.432	51.218
1987	100.068	47.04	42.306	70.280
1988	129.497	55.94	87.045	127.090
1989	34.449	43.14	27.732	51.608
1990	51.390	47.96	46.191	75.207
1991	73.414	51.37	62.078	95.316
1992	118.047	52.11	65.835	100.077
1993	87.536	62.62	131.114	184.163
1994	15.485	49.07	51.105	81.429
1995	138.797	67.55	169.407	234.751
1996	71.604	56.39	89.731	130.530
1997	8.174	47.24	43.136	71.333
1998	178.028	82.31	313.345	430.371
1999	44.198	47.91	45.975	74.934
2000	148.916	60.11	113.500	161.193
2001	10.543	39.14	15.970	35.926
2002	68.369	47.01	42.182	70.123
2003	116.200	63.32	136.253	190.902
2004	104.848	50.31	56.888	88.746
2005	47.038	59.74	111.011	157.964
2006	26.793	61.15	120.644	170.485
2007	24.679	32.72	3.834	17.278
2008	16.480	44.16	31.248	56.156
2009	120.876	44.53	32.575	57.863
2010	43.948	54.00	75.932	112.904

2388 2389

2390

Note: Shaded water years indicate the performance determination would have been suspended due to anomalous rainfall coupled with the observed load being greater than the Load Target.



- 2391 Comparison to WY2001-2010. A comparison of the loads observed during WY2001-2010
- to the Annual Load Targets and Limits is presented in **Figure 3-12**.
- 2393

2394Figure 3-12. Comparison of WY2001-2010 observed loads to the Annual Load Targets2395and Limits for the Lower Kissimmee Sub-watershed.

2396

2397 2398

2399

2400 2401 Note: The performance determination for WY2007 would have been suspended due to rainfall below the minimum value during the Base Period coupled with the observed load being greater than the Load Target.

Exceedance Frequency Analysis. As shown in Figure 3-11, although the scaled observed
loads fall above the Annual Load Targets exactly half the time (seven out of fourteen years),
the scaled observed load for WY1985 exceeded the calculated Annual Load Limit. In
accordance with the proposed performance determination process discussed in Section 2.6,
having the observed load exceed the Annual Load Limit would prevent the basin from
meeting its performance measure for that year. In the case of the scaled Base Period data,

this is an example of a Type I error¹², or "false positive" - when the performance method 2408 2409 suggests a lack of compliance when the basin's load actually achieves the long-term 2410 reduction goals. While this occurrence is not common, it is statistically possible. The use of 2411 the upper 90 percent confidence limit for the Annual Load Limit is consistent with the 2412 District's Chapter 40E-63 F.A.C., and has a theoretical Type I error (i.e., false positive) rate 2413 of approximately ten percent. Using the approach described in Section 2.6, an approximation 2414 of the cumulative exceedance frequency for the determination methodology was estimated 2415 using a Monte Carlo approach based on the annual rainfall and the annual TP loads of the 2416 Base Period (Table 3-19). Because the TP loads and rainfall statistics from the Base Period 2417 do not perfectly describe normal distributions (e.g., the medians are generally less than the 2418 means), the methodology includes conditional probabilities, and because the random number 2419 generator is imperfect, the exceedance frequencies deviate from the theoretical values shown 2420 in the second column. However, the results are determined to be reasonable and defensible 2421 since the cumulative exceedance frequency is less than the theoretical value of approximately 2422 17.5 percent.

2423

Table 3-19. Exceedance frequencies for the proposed determination methodology for the Lower Kissimmee Sub-watershed.

Component of Performance Assessment	Theoretical Exceedance Frequency	Method Exceedance Frequency
Step 1. Load > Annual Load Target?	50%	50%
Step 2. Suspend assessment if Rain is outside the range and Load > Annual Load Target	<20%	5.9%
Step 3. Load > Annual Load Target for 3 consecutive years?	<12.5%	11.1%
Step 4. Load > Annual Load Limit?	<10%	6.3%
Cumulative Exceedance Frequency	<17.5%	15.6%

2427

 12 The Type I error rate is the probability that the performance measure methodology will reject the null hypothesis (i.e., a determination that the TP load does not meet the performance measure) when in reality the null hypothesis is true – the annual load meets the performance measure, and is therefore also known as the false positive rate.

3.3 East Lake Okeechobee Sub-watershed 2428

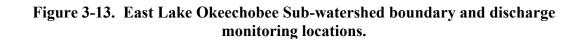
2430 The C-44 Hydrologic Unit and the L-8 Summary Basin, collectively referred to as the East 2431 Lake Okeechobee Sub-watershed, drain into Lake Okeechobee from the east. The C-44 2432 Canal discharges into Lake Okeechobee through the navigation lock S-308, and also 2433 discharges to the St Lucie Canal and estuary to the east through spillway S-80. The L-8 2434 Canal discharges into Lake Okeechobee through gated Culvert 10A, and also discharges to 2435 the southeast through numerous water control structures. In total, the East Lake Okeechobee 2436 Sub-watershed comprises 239,013 acres located east of Lake Okeechobee (Figure 3-13).

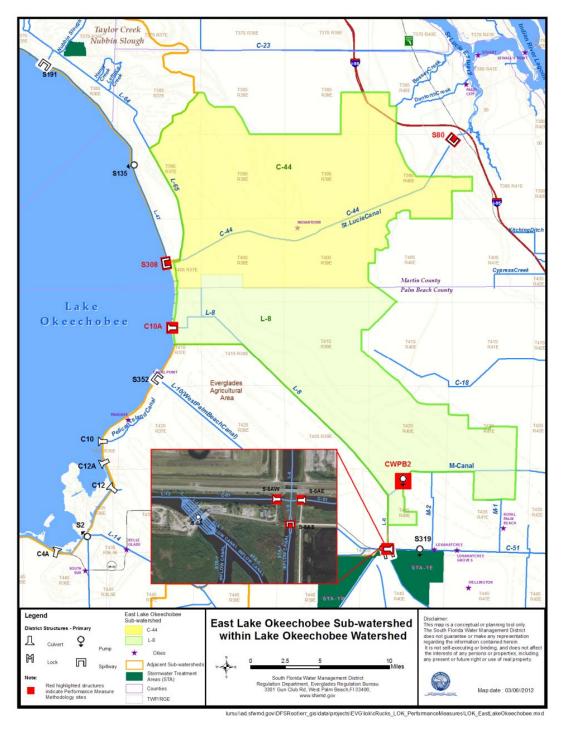
2437 The following sections describe the derivation of the performance measure methodologies 2438 for the basins within the East Lake Okeechobee Sub-watershed.

2439 2440

2429

3.3.1 C-44 Hydrologic Unit


2441 The C-44 Hydrologic Unit is composed of 132,572 acres located in Martin County. Inflows 2442 enter the basin from Lake Okeechobee via S-308. Outflows from the C-44 Hydrologic Unit 2443 are discharged in two directions: to Lake Okeechobee at S-308 (when lake stages are at, or 2444 below 14.5 feet, NGVD), and to the St Lucie Estuary at S-80. Flow and TP monitoring sites 2445 are identified in Tables C-1 and C-2. The performance measure methodology for the C-44 2446 Hydrologic Unit was developed by HDR Engineering, Inc. (HDR 2011c) and is summarized 2447 herein. It is based on flows and TP loads resulting from rainfall and runoff from the C-44 2448 Hydrologic Unit and accounts for pass-through flows and loads from Lake Okeechobee. The 2449 performance measure methodology is based on the total discharges from the basin to Lake 2450 Okeechobee and the St. Lucie Estuary. A few refinements were made to the performance 2451 measure methodology developed by HDR, including


2453

2452 1. As part of a general review of load reductions across the entire Lake Okeechobee Watershed, District staff rounded the load reduction for the C-44 Hydrologic Unit 2454 from 33 percent to 35 percent in recognition of inherent uncertainty (see Section 2.6).

- 2458 2. A different protocol for significant digits was utilized in the Lake Okeechobee 2459 Watershed compared to the protocols used in the St. Lucie River Watershed, and this 2460 resulted in slight refinements to the regression equation coefficients.
- 2461 3. The rainfall data were revised for the C-44 Hydrologic Unit.
- 2462 4. A minor refinement was made to the C-44 Hydrologic Unit boundary to add 2463 approximately 2,850 acres of contributing area from Basin 8.
- 2464

2465 As a result of these refinements, the performance measure was slightly revised from that 2466 found in the HDR final report (HDR 2011c).

- 2467
- 3.3.1.1 2468
- 2469

Background

2470 Basin flows and loads from the C-44 Hydrologic Unit, adjusted for pass-through flows and 2471 loads discharged from Lake Okeechobee, were calculated using algorithms provided in 2472 Appendix A. Table 3-20 provides a summary of the historical flow, load, and rainfall data 2473 for the C-44 Hydrologic Unit for the period of record WY1982-2010. The pass-through 2474 calculations for WY1998 yielded negative TP load and concentration, reflecting a decrease in 2475 TP concentrations as the pass-through flows transited the basin. District staff identified four 2476 rainfall stations considered to be representative of the C-44 Hydrologic Unit. Weighting 2477 factors, based on the Thiessen polygon areas for each rainfall station, were used to calculate 2478 daily basin rainfall values. Figure 3-14 presents a schematic of the Thiessen polygon areas 2479 represented by each of the rainfall stations. For the development of the performance measure 2480 methodology, a base period of WY2000-2010 was selected for the following reasons (HDR 2481 2011c).

- 2482
- 2483
- Basin water management operations during the Base Period (WY2000-2010) • were similar to current operating conditions (represented by WY2001-2010).
- 2484
- It provides a strong relationship between rainfall and nutrient load,

- Some level of source control implementation occurred, but no affects were
 observed in the basin's nutrient load levels.
 - Flow and nutrient concentration data are available and monitoring is ongoing,
 - No significant trends were identified for the monthly or annual data, and
 - Rainfall patterns during this period are reasonably representative of long-term conditions.

2487

2488

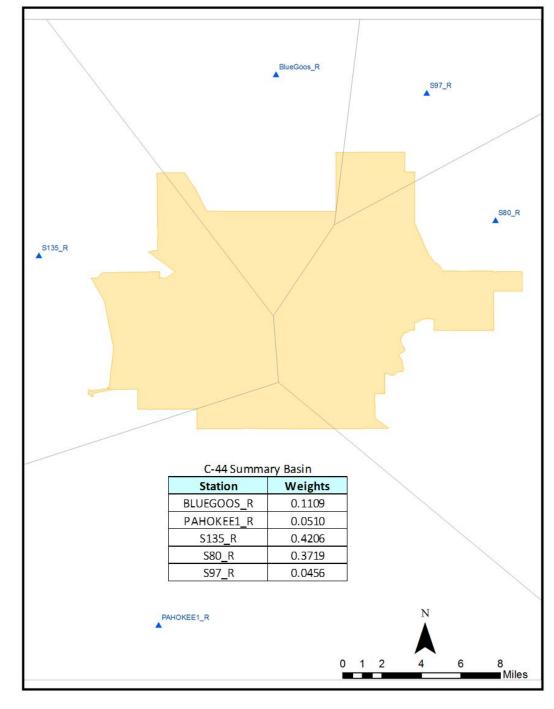
2489

2490

Table 3-20. Summary of historical data for the C-44 Hydrologic Unit.

			FWM		Unit Area	Unit Area	Rainfall Characteristics		istics
Water	Flow	TP Load	TP Conc	Rainfall	Runoff	Load	Kurtosis	Coef. Of Var.	Skewness
Year	AF	mt	μg/L	inches	in/yr	lbs/ac	К	CV	S
1981				37.17			0.326	0.708	0.830
1982	33,047	5.929	145	51.15	2.99	0.10	1.913	0.917	1.413
1983	200,611	37.047	150	70.12	18.16	0.62	-0.839	0.491	0.138
1984	216,426	28.397	106	58.90	19.59	0.47	-0.732	0.630	0.360
1985	192,015	51.046	216	47.82	17.38	0.85	-0.771	0.704	-0.004
1986	231,135	54.573	191	46.55	20.92	0.91	0.826	0.797	0.933
1987	157,737	41.639	214	50.89	14.28	0.69	3.789	0.859	1.622
1988	283,537	51.434	147	48.34	25.66	0.86	-0.706	0.580	0.143
1989	280,212	52.858	153	40.56	25.36	0.88	-0.944	0.724	0.310
1990	245,572	43.126	142	45.17	22.23	0.72	-0.369	0.774	0.808
1991	148,999	27.331	149	54.32	13.49	0.45	-0.722	0.626	0.265
1992	209,544	38.721	150	41.83	18.97	0.64	-0.819	0.601	0.359
1993	359,996	72.273	163	68.22	32.59	1.20	0.742	0.792	0.962
1994	177,180	29.672	136	57.09	16.04	0.49	-0.100	0.470	0.086
1995	439,087	83.710	155	67.89	39.74	1.39	-1.129	0.472	0.209
1996	307,569	71.564	189	70.58	27.84	1.19	-0.165	0.993	0.891
1997	129,269	19.529	122	47.22	11.70	0.32	-1.053	0.497	0.311
1998	157,244	-20.791	-107	57.74	14.23	-0.35	-0.642	0.463	-0.241
1999	148,623	27.924	152	45.45	13.45	0.46	0.431	0.844	1.129
2000	218,672	54.759	203	50.95	19.79	0.91	-0.418	0.795	0.727
2001	106,872	18.805	143	33.53	9.67	0.31	-1.050	0.913	0.619
2002	140,276	52.861	306	52.48	12.70	0.88	-0.608	0.795	0.738
2003	131,019	35.645	221	46.68	11.86	0.59	0.161	0.722	0.991
2004	200,497	69.692	282	40.07	18.15	1.16	0.910	0.865	1.247
2005	207,987	83.848	327	54.20	18.83	1.39	3.895	1.160	1.834
2006	370,613	121.520	266	59.63	33.55	2.02	1.091	0.921	1.096
2007	58,545	14.779	205	30.41	5.30	0.25	-0.764	0.825	0.728
2008	189,664	74.924	320	57.53	17.17	1.25	-1.420	0.535	0.176
2009	118,819	52.596	359	44.41	10.76	0.87	2.324	1.034	1.441
2010	136,617	37.478	222	44.84	12.37	0.62	-0.691	0.545	0.085
Minimum	33,047	5.929	106	30.41	2.99	0.10	-1.420	0.470	-0.004
Average	201,434	48.346	195	50.96	18.23	0.80	0.099	0.746	0.701
Maximum	439,087	121.520	359	70.58	39.74	2.02	3.895	1.160	1.834
Std. Dev.	92,060	25.167	68	10.24	8.33	0.42	1.407	0.182	0.517
Skewness	0.710	0.836	0.963	0.299	0.710	0.84	1.558	0.187	0.480
Median	196,256	47.086	176	49.62	17.76	0.78	-0.513	0.783	0.728

1. Summary statistics exclude WY1998 due to negative TP levels.


2. Slight differences in values presented in HDR (2011c) are due to different protocol for significant digits, revised rainfall data, and a different estimate of basin area.

Notes:

2496 Figure 3-14. Schematic of the C-44 Hydrologic Unit and the selected rainfall stations.

2497

Gary Goforth, Inc. February 2013

- 2498 Table 3-21 compares rainfall, flow, and TP data for the WY 2000-2010 base period with the
- 2499 WY1982-2010 period of record and the recent WY2001-2010 period.

2501 2502

2503

Table 3-21. Comparison of base period with period of record data for the C-4	4
Hydrologic Unit.	

	Flow	TP Load	TP Conc	Rainfall	Unit Area
Metric	AF	mt	μg/L	inches	Load, lbs/ac
	Period	of Record - V	WY1982-2010		
Annual Minimum	33,047	5.929	106	30.41	0.10
Annual Average	201,434	48.346	195	50.96	0.80
Annual Median	196,256	47.086	176	49.62	0.78
Annual Maximum	439,087	121.520	359	70.58	2.02
	Ba	se Period WY	2000-2010		
Annual Minimum	58,545	14.779	143	30.41	0.25
Annual Average	170,871	56.082	266	46.79	0.93
Annual Median	140,276	52.861	266	46.68	0.88
Annual Maximum	370,613	121.520	359	59.63	2.02
D	ifference betw	een Period of	Record and B	ase Period	
Annual Minimum	-25,498	-8.850	-37	0.00	-0.15
Annual Average	30,563	-7.737	-72	4.16	-0.13
Annual Median	55,980	-5.775	-90	2.94	-0.10
Annual Maximum	68,474	0.000	0	10.95	0.00
Annual Minimum	-44%	-60%	-26%	0%	-60%
Annual Average	18%	-14%	-27%	9%	-14%
Annual Median	40%	-11%	-34%	6%	-11%
Annual Maximum	18%	0%	0%	18%	0%
		WY2001-	2010		
Annual Minimum	58,545	14.779	143	30.41	0.25
Annual Average	166,091	56.215	274	46.38	0.93
Annual Median	138,447	52.729	274	45.76	0.88
Annual Maximum	370,613	121.520	359	59.63	2.02
E	Difference betw	veen WY2001	-2010 and Ba	se Period	
Annual Minimum	0	0.000	0	0.00	0.00
Annual Average	-4,780	0.132	8	-0.42	0.00
Annual Median	-1,830	-0.133	8	-0.92	0.00
Annual Maximum	0	0.000	0	0.00	0.00
Annual Minimum	0%	0%	0%	0%	0%
Annual Average	-3%	0%	3%	-1%	0%
Annual Median	-1%	0%	3%	-2%	0%
Annual Maximum	0%	0%	0%	0%	0%

Performance Measure Methodology

2507 Based on the evaluation of individual land use source control effectiveness ranges described 2508 in Section 2.6, the overall range of TP load reduction that could be accomplished through 2509 collective source controls within the basin was estimated, and a load reduction target of 35 2510 percent was determined to be reasonable and appropriate. Details are provided in Appendix 2511 D and in the Data Analysis and Performance Measure Development for the St. Lucie River 2512 Watershed Source Control Program (HDR 2011c).

2513

2506

2514 An Annual Load Target and an Annual Load Limit were derived from the Base Period data 2515 using a 35 percent load reduction. The Annual Load Target and Annual Load Limit and 2516 adjusted rainfall for the C-44 Hydrologic Unit will be calculated according to the 2517 following equations and explanation.

2518

Target = exp [-6.33102 + 2.47876 X + 0.32418 S]2519

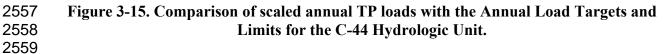
Explained Variance = 83.9%, Standard Error of Regression¹³ = 0.282272520

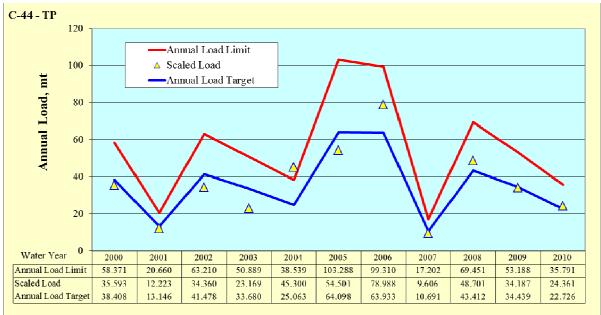
2521 Predictors (X and S) are calculated from the first three moments (m_1, m_2) 2522 m_2 , m_3) of the 12 monthly rainfall totals (r_i , i=1 to 12, inches) for the 2523 **Evaluation Year:**

- 2524 $m_1 = Sum [r_i] / 12$
- $m_2 = Sum [r_1 m_1]^2 / 12$ 2525
- $m_3 = Sum [r_1 m_1]^3 / 12$ 2526
- 2527 $X = \ln (12 m_1)$
- $S = (12/11) m_3 / m_2^{-1.5}$ 2528
- 2529

¹³ The standard error of the regression equation is expressed in the same units as the transformed load, i.e., ln(metric tons).

2530 Limit = Target * exp (1.39682 SE)2531 SE = standard error of the predicted ln(Load) for May-April2532 interval SE = $0.28227 [1 + 1/11 + 2.17743 (X-X_m)^2 + 0.37715 (S-S_m)^2 -$ 2533 $0.19128 (X-X_m) (S-S_m)$]^{0.5} 2534 2535 2536 Where: 2537 X = natural logarithm of the 12-month total rainfall (ln(inches)) 2538 X_m = average value of the predictor in base period = 3.82565 2539 S = is the skewness of the annual rainfall calculated from 12 monthly rainfall 2540 totals 2541 S_m = average value of the predictor in base period = 0.88018 2542 2543 The first predictor (X) indicates that load increases exponentially with total annual rainfall. 2544 The second predictor (S) indicates that the load resulting from a given annual rainfall is 2545 higher when the distribution of monthly rainfall has higher skewness. For a given annual 2546 rainfall, the lowest load occurs when rainfall is evenly distributed across months and the 2547 highest load occurs when all of the rain falls in one month. Real cases fall in between. 2548 2549 A comparison of the scaled loads and the resulting Targets and Limits for the Base Period


A comparison of the scaled loads and the resulting Targets and Limits for the Base Period are presented in **Figure 3-15**. The combined annual TP loads at S-308 and S-80, adjusted to account for pass-through loads as described in Appendix A and regional projects (if applicable), will be evaluated against the performance measure described above.


2553

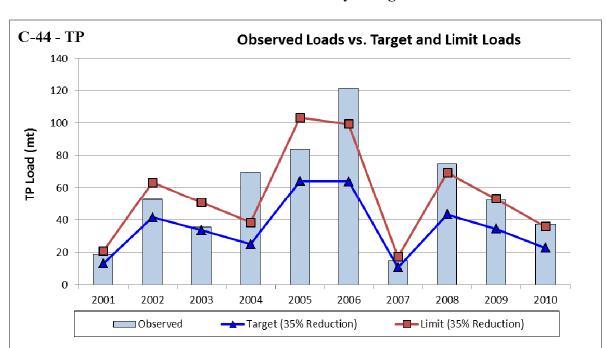
- 2555
- 2556

Suspension of Performance Determination: The performance determination will be suspended due to rainfall conditions if the observed annual TP load, adjusted for regional projects (if present), from the basin exceeds the Annual Load Target and the adjusted rainfall falls outside the range of adjusted rainfall values for the Base Period (29.81 to 61.40 inches), as derived below. Rainfall conditions will be assessed by calculating an adjusted rainfall 2568 amount which reflects the cumulative effect of the two variables that comprise the Load 2569 Target equation: Rain and S:

- 2570
- 2571 Adjusted Rainfall = equivalent rainfall for mean S variable (inches)
- 2572
- 2573 $Rain_{adj} = exp[ln(Rain) + 0.13078 (S - 0.88018)]$
- 2574

2575	Table 3-22 shows the calculated adjusted rainfall values, Annual Load Targets and Annual
2576	Load Limits for the period of record.
2577 2578	The annual performance determination process will account for pass-through loads and
2579	regional projects, as applicable, and is presented in the flowchart in Figure 1-2.
2580 2581	Comparison to WY2001-2010. A comparison of the loads observed during WY2001-2010
2582	to the Annual Load Targets and Limits is presented in Figure 3-16.
2583	
2584 2585 2586 2587 2588 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2604 2605 2606 2607 2608 2609 2610 2611	

2612Table 3-22. Annual adjusted rainfall for the period of record for the C-44 Hydrologic2613Unit (Base Period: WY2000-2010).


2614

Water	Observed	Observed	Skewness	Target	Limit	Adjusted
Year	Load, mt	Rain, in		Load, mt	Load, mt	Rain, in
1982	5.929	51.15	1.413	48.442	74.781	54.84
1983	37.047	70.12	0.138	70.032	118.007	63.63
1984	28.397	58.90	0.360	48.848	77.286	55.03
1985	51.046	47.82	-0.004	25.897	41.268	42.60
1986	54.573	46.55	0.933	32.825	49.563	46.87
1987	41.639	50.89	1.622	51.188	80.342	56.07
1988	51.434	48.34	0.143	27.899	43.805	43.90
1989	52.858	40.56	0.310	19.063	29.535	37.65
1990	43.126	45.17	0.808	29.255	44.181	44.75
1991	27.331	54.32	0.265	38.755	60.919	50.12
1992	38.721	41.83	0.359	20.907	32.216	39.07
1993	72.273	68.22	0.962	85.455	136.943	68.95
1994	29.672	57.09	0.086	41.368	66.685	51.46
1995	83.710	67.89	0.209	66.146	109.698	62.18
1996	71.564	70.58	0.891	90.856	147.130	70.68
1997	19.529	47.22	0.311	27.798	42.954	43.83
1998	-20.791	57.74	-0.241	38.266	64.273	49.86
1999	27.924	45.45	1.129	32.965	49.986	46.95
2000	54.759	50.95	0.727	38.408	58.371	49.94
2001	18.805	33.53	0.619	13.146	20.660	32.40
2002	52.861	52.48	0.738	41.478	63.210	51.51
2003	35.645	46.68	0.991	33.680	50.889	47.36
2004	69.692	40.07	1.247	25.063	38.539	42.04
2005	83.848	54.20	1.834	64.098	103.288	61.40
2006	121.520	59.63	1.096	63.933	99.310	61.34
2007	14.779	30.41	0.728	10.691	17.202	29.81
2008	74.924	57.53	0.176	43.412	69.451	52.47
2009	52.596	44.41	1.441	34.439	53.188	47.79
2010	37.478	44.84	0.085	22.726	35.791	40.41

2619 2620 Note: Shaded water years indicate the performance determination would have been suspended due to anomalous rainfall coupled with the observed load being greater than the Load Target.

Figure 3-16. Comparison of WY2001-2010 observed loads to the Annual Load Targets and Limits for the C-44 Hydrologic Unit.

2624 2625

2626

2623

Note: The Base Period extended from WY2000-2010.

2627 Exceedance Frequency Analysis. As shown in Figure 3-15, although the scaled observed 2628 loads fall above the Annual Load Targets less than half the time (three out of eleven years, or 2629 33 percent), the scaled observed load for WY2004 exceeded the calculated Annual Load 2630 Limit. In accordance with the proposed performance determination process discussed in 2631 Section 2.6, having the observed load exceed the Annual Load Limit would prevent the basin 2632 from meeting its performance measure for that year. In the case of the scaled Base Period data, this is an example of a Type I error¹⁴, or "false positive" - when the performance 2633 2634 method suggests a lack of compliance when the basin's load actually achieves the long-term 2635 reduction goals. While this occurrence is not common, it is statistically possible. The use of

¹⁴ The Type I error rate is the probability that the performance measure methodology will reject the null hypothesis (i.e., a determination that the TP load does not meet the performance measure) when in reality the null hypothesis is true – the annual load meets the performance measure, and is therefore also known as the false positive rate.

2636 the upper 90 percent confidence limit for the Annual Load Limit is consistent with the 2637 District's Chapter 40E-63 F.A.C., and has a theoretical Type I error (i.e., false positive) rate 2638 of approximately ten percent. Using the approach described in Section 2.6, an approximation 2639 of the cumulative exceedance frequency for the determination methodology was estimated 2640 using a Monte Carlo approach based on the annual rainfall and the annual TP loads of the 2641 Base Period (Table 3-23). Because the TP loads and rainfall statistics from the Base Period 2642 do not perfectly describe normal distributions (e.g., the medians are generally less than the 2643 means), the methodology includes conditional probabilities, and because the random number generator is imperfect, the exceedance frequencies deviate from the theoretical values shown 2644 2645 in the second column. However, the results were determined to be reasonable and defensible 2646 since the cumulative exceedance frequency is less than the theoretical value of approximately 2647 17.5 percent.

- 2648
- 2649 2650
- 2651

Table 3-23. Exceedance frequencies for the proposed performance measuremethodology for the C-44 Hydrologic Unit.

Component of Performance Assessment	Theoretical Exceedance Frequency	Method Exceedance Frequency
Step 1. Load > Annual Load Target?	50%	50%
Step 2. Suspend assessment if Rain _{adj} is outside the range and Load > Annual Load Target	<20%	5.9%
Step 3. Load > Annual Load Target for 3 consecutive years?	<12.5%	10.9%
Step 4. Load > Annual Load Limit?	<10%	4.1%
Cumulative Exceedance Frequency	<17.5%	13.8%

3.3.2 L-8 Summary Basin

The following sections present a description of the L-8 Summary Basin, a summary of historical flow and TP levels, the selection of a Base Period, an estimated range of load reductions attributable to collective source controls, and the derivation of the resulting performance measure.

2663 3.3.2.1 Background

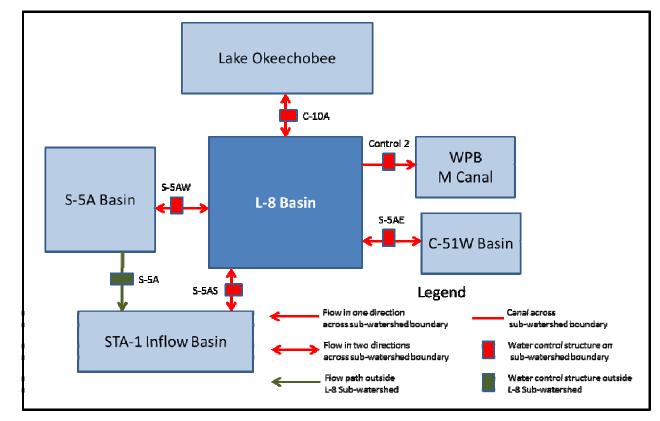
2664

The L-8 Summary Basin is located within the East Lake Okeechobee Sub-watershed and comprises 106,440 acres located east of Lake Okeechobee (**Figure 3-13**). A summary of the L-8 Summary Basin water control structures is presented in **Table 3-24 and Figure 3-17**; their locations are provided in **Figure 3-13**. The L-8 Summary Basin discharges stormwater runoff and other flows to multiple receiving waters:

- **2670** > To Lake Okeechobee at Lake Culvert 10A (C-10A)
- 2671The purpose of this structure is to provide irrigation releases from Lake2672Okeechobee to the agricultural lands along the L-8 Canal and to afford gravity2673drainage of that canal into Lake Okeechobee during flood periods, when the2674lake is lower than the canal (reference: SFWMD structure manual). During2675periods of water supply deliveries and regulatory releases from Lake2676Okeechobee, the flap gates at C-10A are raised and water flows into the L-82677Canal.
- 2678 > To the City of West Palm Beach's Water Catchment Area through their Control
 2679 Pump Station No. 2.
- 2680 2681
- historical data analysis for the L-8 Summary Basin began at this point in time.

• Flow data for this station is only available beginning May 1994, hence the

Structure	Inflow/Outflow	Discharges From	Discharges To
C-10A	Both	L-8 to Lake	Lake to L-8
S-5AS	Both	Prior to June 1999: L-8 to WCA-1; After June 1999: L-8 to STA-1 Inflow Basin	Prior to June 1999: WCA-1 to L-8; After June 1999: STA- 1 Inflow Basin to L-8
S-5AE	Both	L-8 to C-51 W Canal	C-51 W Canal to L-8
S-5AW	Both	L-8 to West Palm Beach Canal in EAA	WPB Canal to L-8
Control 2	Out	L-8 Canal	M-1 Canal


Table 3-24. L-8 Summary Basin inflow and outflow structures.

2683

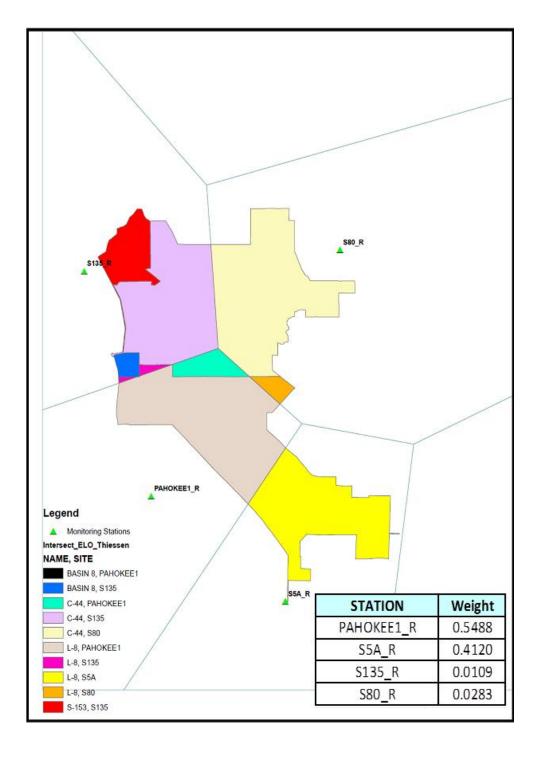
2682

2684

Figure 3-17. Flow diagram for the L-8 Summary Basin

2685


Gary Goforth, Inc. February 2013



- **2686** > To Water Conservation Area 1 (WCA1) through S-5AS,
- 2687 > To the West Palm Beach Canal Basin (also known as the S-5A Basin), part of the
 2688 Everglades Agricultural Area (EAA) through S-5AW, and
- 2689 ➤ To C-51 West Basin through S-5AE.
- 2690 The L-8 Summary Basin receives inflows from multiple sources:
- 2692 \succ from WCA-1 at S-5AS;
- 2693 From the C-51 West Basin at S-5AE, and
- **2694** From the West Palm Beach Canal Basin in the EAA at S-5AW.
- Basin flows and loads from the L-8 Summary Basin, adjusted for pass-through flows andloads, were calculated using algorithms provided in Appendix A.
- District staff identified four rainfall stations considered to be representative of the L-8
 Summary Basin. Weighting factors, based on the Thiessen polygon areas for each rainfall
 station, were used to calculate daily basin rainfall values. Figure 3-18 presents a schematic
 of the Thiessen polygon areas represented by each of the rainfall stations.
- 2701
- 2702
- 2703
- 2704

2708	Annual flow and TP data for discharges from the L-8 Summary Basin are summarized in
2709	Table 3-25. For the development of the performance measure methodology, a Base Period
2710	of WY1995-2003 was selected for the following reasons.
2711	\succ it represents a period with minimal implementation of source controls. With the
2712	selection of the Base Period to precede significant source control implementation, no
2713	additional calculation is necessary in the performance measure methodology to
2714	account for prior source control implementation,
2715	> basin water management operations were similar to current operating conditions
2716	affecting nutrient loading.
2717	it represents a period of relatively constant land use practices,
2718	it traversed a wide range of hydrologic conditions (wet and dry years),
2719	reliable water quality and hydrologic data are available, and
2720	\succ a strong correlation exists between annual TP loads and rainfall, allowing for a
2721	performance measure methodology that explicitly incorporates hydrologic variability.
2722 2723	The Base Period is compared to the historical period of record and WY2001-2010 in Table
2724	3-26.
2725	
2726	
2727	
2728	
2729	
2730	
2731	
2732	
2733	
2734	
2735	

Table 3-25. Summary of historical data for the L-8 Summary Basin.

			FWM			Unit Area	Unit Area	Ra	Rainfall Characteristics		
Water	Flow	TP Load	TP Conc	Rainfall	Area	Runoff	Load	Kurtosis	Coef. Of Var.	Skewness	
Year	AF	mt	μg/L	inches	acres	in/yr	lbs/ac	K	CV	S	
1995	346,189	34.383	81	73.63	106,440	39.03	0.71	-1.834	0.545	-0.162	
1996	231,284	20.855	73	54.83	106,440	26.07	0.43	-0.205	0.895	0.886	
1997	116,731	8.544	59	53.36	106,440	13.16	0.18	-0.811	0.575	0.276	
1998	219,254	19.086	71	62.11	106,440	24.72	0.40	-0.704	0.517	0.020	
1999	147,738	13.232	73	42.28	106,440	16.66	0.27	0.466	0.856	1.207	
2000	174,897	13.195	61	60.17	106,440	19.72	0.27	1.795	0.789	1.251	
2001	102,466	17.134	136	37.65	106,440	11.55	0.35	-1.452	0.933	0.451	
2002	181,863	17.979	80	54.39	106,440	20.50	0.37	-1.735	0.715	0.345	
2003	104,544	5.220	40	50.27	106,440	11.79	0.11	0.104	0.653	0.737	
2004	136,930	2.587	15	49.95	106,440	15.44	0.05	1.061	0.825	1.058	
2005	139,143	9.533	56	56.45	106,440	15.69	0.20	2.534	1.014	1.532	
2006	99,927	3.319	27	43.33	106,440	11.27	0.07	-1.595	0.698	-0.096	
2007	64,844	6.907	86	36.98	106,440	7.31	0.14	-0.684	1.030	0.823	
2008	164,628	14.918	73	44.39	106,440	18.56	0.31	-1.266	0.605	0.340	
2009	151,572	8.705	47	46.48	106,440	17.09	0.18	1.865	1.107	1.367	
2010	97,433	11.686	97	63.89	106,440	10.98	0.24	-1.462	0.578	0.082	
Minimum	64,844	2.587	15	36.98	106,440	7.31	0.05	-1.834	0.517	-0.162	
Average	154,965	12.955	68	51.89	106,440	17.47	0.27	-0.245	0.771	0.632	
Maximum	346,189	34.383	136	73.63	106,440	39.03	0.71	2.534	1.107	1.532	
Std. Dev.	68,117	7.973	28	10.03	0	7.68	0.17	1.413	0.188	0.549	
Skewness	1.519	1.183	0.418	0.414		1.519	1.18	0.735	0.311	0.124	
Median	143,441	12.441	72	51.82	106,440	16.17	0.26	-0.694	0.752	0.594	

Gary Goforth, Inc. February 2013

Table 3-26. Comparison of Base Period with period of record data and WY2001-2010 for the L-8 Summary Basin.

	Flow	TP Load	TP Conc	Rainfall	Unit Area
Metric	AF	mt	μg/L	inches	Load, lbs/ac
		Record - WY			
Annual Minimum	64,844	2.587	15	36.98	0.05
Annual Average	154,965	12.955	68	51.89	0.27
Annual Median	143,441	12.441	72	51.82	0.26
Annual Maximum	346,189	34.383	136	73.63	0.71
	Base P	eriod WY199	5-2003		
Annual Minimum	102,466	5.220	40	37.65	0.11
Annual Average	180,552	16.625	75	54.30	0.34
Annual Median	174,897	17.134	73	54.39	0.35
Annual Maximum	346,189	34.383	136	73.63	0.71
Differe	ence between	Period of Rec	ord and Base	Period	
Annual Minimum	-37,622	-2.633	-25	-0.67	-0.05
Annual Average	-25,587	-3.670	-7	-2.41	-0.08
Annual Median	-31,457	-4.694	-1	-2.58	-0.10
Annual Maximum	0	0.000	0	0.00	0.00
Annual Minimum	-37%	-50%	-63%	-2%	-50%
Annual Average	-14%	-22%	-9%	-4%	-22%
Annual Median	-18%	-27%	-1%	-5%	-27%
Annual Maximum	0%	0%	0%	0%	0%
		WY2001-201			
Annual Minimum	64,844	2.587	15	36.98	0.05
Annual Average	124,335	9.799	64	48.38	0.20
Annual Median	120,737	9.119	65	48.22	0.19
Annual Maximum	181,863	17.979	136	63.89	0.37
Difference between WY2001-2010 and Base Period					
Annual Minimum	-37,622	-2.633	-25	-0.67	-0.05
Annual Average	-56,217	-6.827	-11	-5.92	-0.14
Annual Median	-54,160	-8.015	-9	-6.18	-0.17
Annual Maximum	-164,326	-16.404	0	-9.74	-0.34
Annual Minimum	-37%	-50%	-63%	-2%	-50%
Annual Average	-31%	-41%	-14%	-11%	-41%
Annual Median	-31%	-47%	-12%	-11%	-47%
Annual Maximum	-47%	-48%	0%	-13%	-48%

Performance Measure Methodology 2764 3.3.2.2 2765 2766 Based on the evaluation of individual land use source control effectiveness ranges described 2767 in Section 2.6, the overall range of TP load reduction that could be accomplished through 2768 collective source controls within the basin was estimated, and a load reduction target of 20 2769 percent was determined to be reasonable and appropriate. Details are provided in Appendix 2770 D and in Attachment 1. 2771 2772 An Annual Load Target and an Annual Load Limit were derived from the Base Period data 2773 using a 20 percent load reduction. The Annual Load Target and Annual Load Limit for the 2774 L-8 Summary Basin will be calculated according to the following equations and 2775 explanation. 2776 Target = $(-5.06793 + 0.08241 \text{ X} - 1.54007 \text{ S} + 6.93876 \text{ C})^2$ 2777 Explained Variance = 84.1%, Standard Error of Regression¹⁵ = 0.461542778 2779 Predictors (X, C, S) are calculated from the first three moments (m_1, m_2, m_3) m_2) of the 12 monthly rainfall totals (ri, i=1 to 12, inches) for the Evaluation 2780 2781 Year: 2782 $m_1 = Sum [r_i] / 12$ $m_2 = Sum [r_i - m_1]^2 / 12$ 2783 $m_3 = Sum [r_i - m_1]^3 / 12$ 2784 2785 $X = (12 m_1)$ $C = [(12/11) m_2]^{0.5}/m_1$ 2786 $S = (12/11) m_3 / m_2^{-1.5}$ 2787 2788

¹⁵ The standard error of the regression equation is expressed in the same units as the transformed load, i.e., sqrt(metric tons).

2789	Limit = $[sqrt(Target) + (1.47588 SE)]^{2}$
2790	SE = standard error of the predicted sqrt(Load) for May-April interval
2791	$SE = 0.46154 \left[1 + 1/9 + 0.00211 (X-X_m)^2 + 0.98133 (S-S_m)^2 + 0.98133 (S-S_m)^2 \right] + 0.00211 (X-X_m)^2 + 0.0021 (X-X_m)^2 + 0.00211 (X-X_m)^2 + 0.00211 (X-X_m)^$
2792	14.63127 $(C-C_m)^2$ - 0.0005 $(X-X_m) (S-S_m)$ +
2793	$0.19976 (X-X_m) (C-C_m) - 4.37464 (S-S_m) (C-C_m)]^{0.5}$
2794	Where:
2795	X = the 12-month total rainfall (inches)
2796	C = coefficient of variation calculated from 12 monthly rainfall totals
2797	S = skewness coefficient calculated from 12 monthly rainfall totals
2798	X_m = average value of the predictor in calibration period = 54.2989
2799	C_m = average value of the predictor in calibration period = 0.71978
2800	S_m = average value of the predictor in calibration period = 0.55678
2801	
2802	The first predictor (X) indicates that load increases with total annual rainfall. The second
2803	and third predictors (C and S) indicate that the load resulting from a given annual
2804	rainfall is higher when the distribution of monthly rainfall has higher variability or lower
2805	skewness. For a given annual rainfall, the lowest load occurs when rainfall is evenly
2806	distributed across months and the highest load occurs when all of the rain falls in one
2807	month. Real cases fall in between.
2808	

A comparison of the scaled loads and the resulting Targets and Limits for the Base Period 2809 are presented in Figure 3-19. Annual TP loads at S-5AE, S-5AS, S-5AW, WPB2 and C-2810 10A, adjusted to account for pass-through loads as described in Appendix A and regional 2811 projects (if applicable), will be evaluated against the performance measure described above. 2812

2813 2814

2815

2816

Water Year

Annual Load Limit

Annual Load Target

Scaled Load

0

1995

34.837

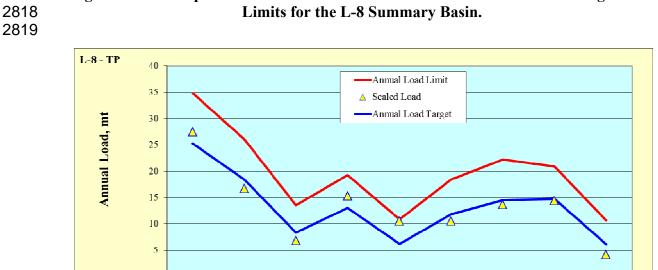
27.506

25.309

1996

26.129

16.684


18.457

1997

13.575

6.835

8.375

1998

19.304

15.269

13.010

1999

10.894

10.586

6.235

2000

18.482

10.556

11.824

2001

22.260

13.707

14.546

2002

20.929

14.383

14.777

2003

10.640

4.176

6.104

2817 Figure 3-19. Comparison of scaled observed loads with the Annual Load Targets and

2821

2822 Suspension of Performance Determination. The performance determination will be 2823 suspended due to rainfall conditions if the observed annual TP load, adjusted for regional 2824 projects (if present), from the basin exceeds the Annual Load Target and the adjusted rainfall 2825 falls outside the range of adjusted rainfall values for the Base Period (41.28 to 72.35 inches), as derived below. Rainfall conditions will be assessed by calculating an adjusted rainfall 2826 2827 amount which reflects the cumulative effect of the predictor variables that make up the 2828 Annual Load Target equation. The adjusted rainfall is the rainfall that would produce the 2829 equivalent annual load using the Annual Load Target equation by setting the value of S and 2830 C to its mean value for the calibration period.

Adjusted Rainfall = equivalent rainfall for mean C and S variables (inches)
Adjusted Rainfall =
$$X - 18.68862 (S - 0.55678) + 84.20099 (C - 0.71978)$$

2835

2836	The calculated adjusted rainfall values, Annual Load Targets and Annual Load Limits for the
2837	WY1995-2010 period of record are summarized in Table 3-27.
2838 2839	The annual performance determination process will account for pass-through loads and
2840	regional projects, as applicable, and is presented in the flowchart in Figure 1-2.
2841	
2842	Comparison to WY2001-2010. A comparison of the WY2001-2010 observed loads to the
2843	Annual Load Targets and Limits is presented in Figure 3-20.
2844	
2845	Exceedance Frequency Analysis. Using the approach described in Section 2.6, an
2846	approximation of the cumulative exceedance frequency for the determination methodology
2847	was estimated using a Monte Carlo approach based on the annual rainfall and the annual TP
2848	loads of the Base Period (Table 3-28). Because the TP loads and rainfall statistics from the
2849	Base Period do not perfectly describe normal distributions (e.g., the medians are generally
2850	less than the means), the methodology includes conditional probabilities, and because the
2851	random number generator is imperfect, the exceedance frequencies deviate from the
2852	theoretical values shown in the second column. However, the results are determined to be
2853	reasonable and defensible since the cumulative exceedance frequency is less than the
2854	theoretical value of approximately 17.5 percent.
2855	
2856	
2857	
2858	
2859	
2860	
2861	
2862	

2009

2010

14.918

8.705

11.686

Table 3-27. Annual adjusted rainfall for the historical period of record for the L-8 Summary Basin (Base Period: WY1995-2003). Water Observed Observed Limit Adjusted Target Load, mt Load, mt Load, mt Rain, in Year Rain, in 1995 34.383 25.309 34.837 72.35 73.63 26.129 1996 20.855 54.83 18.457 63.43 1997 8.544 53.36 8.375 13.575 46.42 1998 19.086 62.11 13.010 19.304 55.07 1999 13.232 42.28 6.235 10.894 41.60 2000 13.195 60.17 11.824 18.482 53.02 2001 17.134 37.65 14.546 22.260 57.58 2002 17.979 54.39 14.777 20.929 57.95 2003 5.220 50.27 6.104 10.640 41.28 2.587 9.881 15.221 2004 49.95 49.44 27.759 9.533 18.151 2005 56.45 63.00 3.319 12.207 19.366 2006 43.33 53.70 2007 6.907 36.98 14.891 22.756 58.13

2883

2863

2864

2865

Note: Shaded water years indicate the performance determination would have been suspended due to anomalous rainfall coupled with the observed load being greater than the Annual Load Target.

5.128

18.821

16.658

9.897

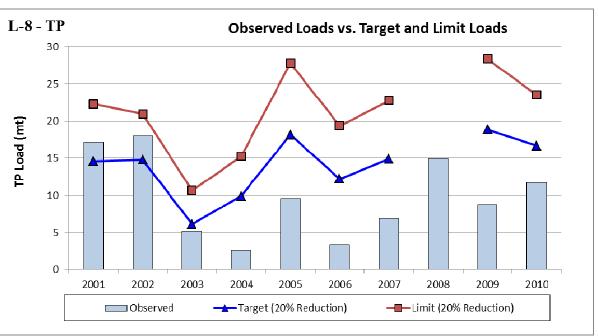
28.370

23.475

38.78

63.94

60.82


44.39

46.48

63.89

Figure 3-20. Comparison of WY2001-2010 observed loads to the Annual Load Targets and Limits for the L-8 Summary Basin.

Notes: 1. The performance determination for WY2008 would have been suspended due to rainfall below the minimum value during the Base Period coupled with the observed load being greater than the Load Target. 2. The Base Period extended from WY1995-2003.

Table 3-28. Exceedance frequencies for the proposed determination methodology for
the L-8 Summary Basin.

Component of Performance Assessment	Theoretical Exceedance Frequency	Method Exceedance Frequency
Step 1. Load > Annual Load Target?	50%	50%
Step 2. Suspend assessment if Rain _{adj} is outside the range and Load > Annual Load Target	<20%	16.2%
Step 3. Load > Annual Load Target for 3 consecutive years?	<12.5%	7.1%
Step 4. Load > Annual Load Limit?	<10%	1.2%
Cumulative Exceedance Frequency	<17.5%	8.0%

2897 3.4 Indian Prairie Sub-watershed

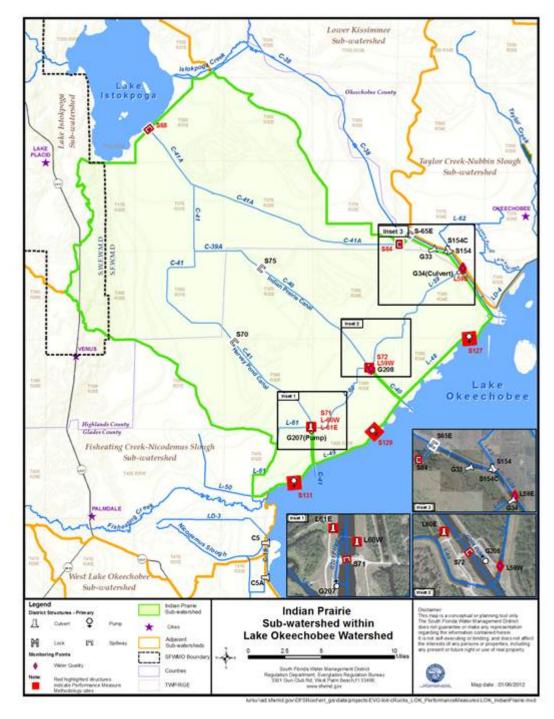
The following sections present a description of the sub-watershed, a summary of historical flow and TP levels, the selection of a Base Period, an estimated range of load reductions attributable to collective source controls, and the derivation of the resulting performance measure.

2903 3.4.1.1 Background

2904

2898

The Indian Prairie Sub-watershed occupies 276,577 acres lying between Lakes Istokpoga and Okeechobee (**Figure 3-21**). It is bordered on the west by the Fisheating Creek and Lake Istokpoga Sub-watersheds and on the east by the Lower Kissimmee and Taylor Creek-Nubbin Slough Sub-watersheds. Three primary canals convey water through the subwatershed, C-41 (Harney Pond Canal), C-40 (Indian Prairie Canal), and C-41A. Discharges are made from Lake Istokpoga through S-68 into C-41A and are then conveyed through one of three routes:


- C-41A discharges at S-84 into C-38 downstream of S-65E,
- C-40 discharges at S-72 into Lake Okeechobee, and
- C-41 discharges at S-71 into Lake Okeechobee.
- 2915

2916 Table 3-29 and Figure 3-22 identifies the inflow and outflow structures that move water 2917 across the sub-watershed borders. Four minor structures (HP-7, Inflow-1, Inflow-2 and 2918 Inflow-3) are located along the east and west banks of the C-41 Canal downstream of S-71, 2919 although flow and water quality are not monitored at these structures. Flow and water 2920 quality monitoring was initiated downstream of these structures in the C-41 Canal at a 2921 location known as C41H78, but the first year of reported TP load data was not available until 2922 WY2010. Because insufficient data were available, these minor structures were excluded 2923 from the derivation of the performance measure for the Indian Prairie Sub-watershed.

2924Figure 3-21. Indian Prairie Sub-watershed boundary and discharge monitoring2925locations.

2926 2927

Gary Goforth, Inc. February 2013

Station	Inflow/Outflow	Discharges From	Discharges To
G-33	Out	Paradise Run	Lake Okeechobee via C-38
G-34/L-59E	Out	L-59	Lake Okeechobee via C-38
G-207	In	Lake Okeechobee	C-41
G-208	In	Lake Okeechobee	C-40
L-59W	Out	C-59	Lake Okeechobee via C-40
L-60E	Out	L-60	Lake Okeechobee via C-40
L-60W	Out	L-60	Lake Okeechobee via C-41
L-61 E	Out	L-61	Lake Okeechobee via C-41
S-68	In	Lake Istokpoga	C-41A
S-71	Out	C-41	Lake Okeechobee via C-41
S-72	Out	C-40	Lake Okeechobee via C-40
S-84	Out	C-41A	Lake Okeechobee via C-38
S-127	Out	S-127 Basin	Lake Okeechobee
S-129	Out	S-129 Basin	Lake Okeechobee
S-131	Out	S-131 Basin	Lake Okeechobee

Table 3-29. Indian Prairie Sub-watershed inflow and outflow structures.

2930 2931 2932

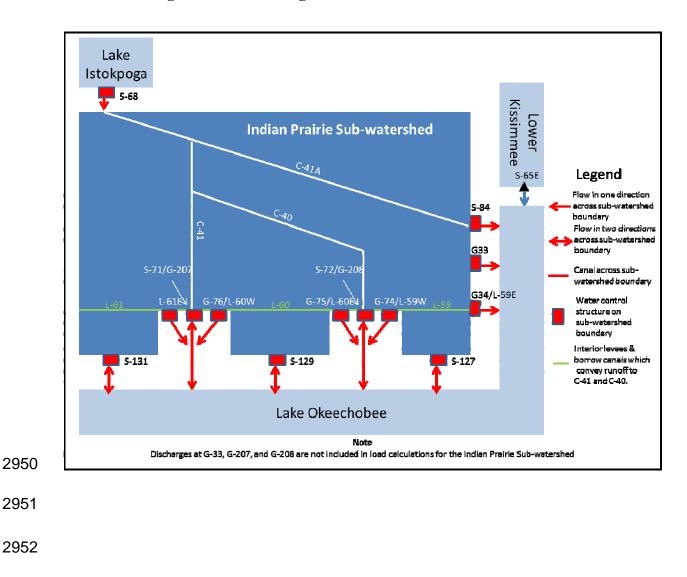
2928

2929

Note: flow and TP monitoring sites are identified in Tables C-1 and C-2.

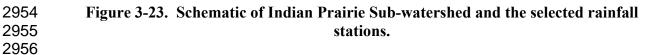
2933 There are no structures downstream of the L-61, L-60, and L-59 outlets; so their discharges 2934 flow directly to Lake Okeechobee. Water quality data at G-207, G-208 and G-33 are not 2935 collected. Therefore, flows and loads at these structures are not used in the performance 2936 measure methodology. It is not anticipated that this omission will significantly affect the 2937 annual performance determination. G-207 and G-208 only pump supplemental water supply 2938 into the sub-watershed during drought conditions and the volume and quality of stormwater 2939 runoff should not be significantly affected. After a review of the S-129 spillway data, it was 2940 determined that the negative flows were questionable, and therefore, they were omitted from 2941 the analyses.

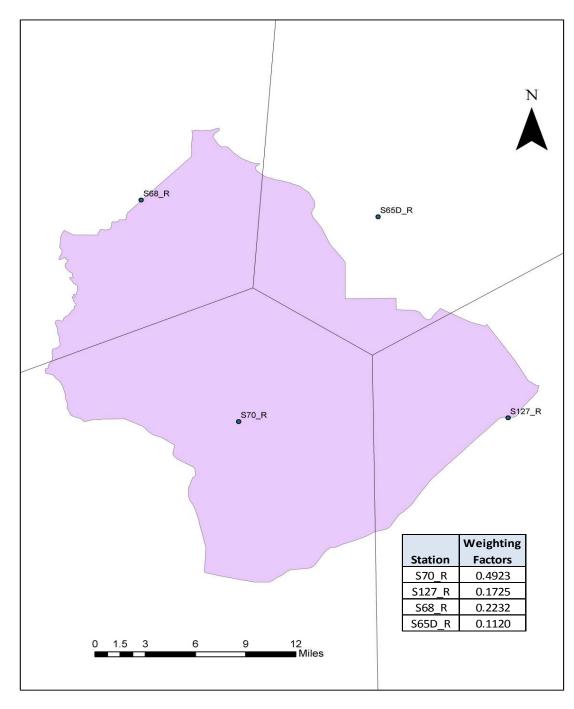
2942 District staff identified rainfall stations considered to be representative of the Indian Prairie 2943 Sub-watershed for the period WY1989-2010. A schematic of the sub-watershed with the 2944 various rain stations is presented in **Figure 3-23**. Monthly rainfall data and weighting factors



for the rainfall stations for each basin were developed and provided by the District.
Weighting factors are shown in Figure 3-23. Missing daily data were filled in with values of
an adjacent station.

2948


2949


Figure 3-22. Flow diagram for Indian Prairie Sub-watershed.

Gary Goforth, Inc. February 2013

The performance measure methodology is based on flows and TP loads resulting from rainfall and runoff from the Indian Prairie Sub-watershed. Basin flows and loads, adjusted for pass-through flows and loads discharged from external sources, were calculated using algorithms provided in Appendix A. Annual flow and TP data for discharges from the Indian Prairie Sub-watershed into Lake Okeechobee are summarized in **Table 3-30**.

2964 2965

2966

			FWM		Unit Area	Unit Area	Rainfall Characteristics		
Water	Flow	TP Load	TP Conc	Rainfall	Runoff	Load	Kurtosis	Coef. Of Var.	Skewness
Year	AF	mt	μg/L	inches	in/yr	lbs/ac	K	CV	S
1989	107,966	27.851	209	40.18	4.68	0.22	-1.686	0.705	0.252
1990	202,940	55.363	221	40.56	8.81	0.44	0.385	0.816	0.985
1991	174,913	71.071	329	49.86	7.59	0.57	0.069	0.746	0.772
1992	214,626	67.635	255	46.49	9.31	0.54	0.512	0.749	0.756
1993	187,848	90.336	390	47.18	8.15	0.72	3.195	0.888	1.604
1994	74,500	23.478	255	37.70	3.23	0.19	-1.133	0.540	0.443
1995	312,342	76.579	199	49.45	13.55	0.61	-0.500	0.524	0.980
1996	350,771	119.585	276	47.60	15.22	0.95	-1.044	0.802	0.478
1997	100,752	29.220	235	37.40	4.37	0.23	0.445	0.846	0.929
1998	363,576	86.631	193	54.87	15.77	0.69	0.190	0.471	-0.985
1999	180,128	65.140	293	42.68	7.82	0.52	-0.418	0.908	0.963
2000	283,700	68.956	197	37.09	12.31	0.55	7.950	1.171	2.528
2001	59,726	14.763	200	26.90	2.59	0.12	-0.943	1.078	0.791
2002	215,063	114.458	431	30.24	9.33	0.91	-0.801	1.001	0.678
2003	341,652	155.802	370	43.78	14.82	1.24	3.817	0.686	1.550
2004	256,333	95.566	302	36.24	11.12	0.76	-1.418	0.691	0.165
2005	389,025	178.081	371	37.99	16.88	1.42	0.169	0.964	1.016
2006	373,094	69.216	150	38.07	16.19	0.55	2.241	0.906	1.254
2007	112,267	52.797	381	28.31	4.87	0.42	0.516	1.127	1.216
2008	58,630	20.593	285	38.01	2.54	0.16	2.393	0.771	1.232
2009	280,338	166.168	481	40.21	12.16	1.32	0.096	1.211	1.174
2010	269,223	107.779	325	52.95	11.68	0.86	-1.029	0.704	0.317
Minimum	58,630	14.763	150	26.90	2.54	0.12	-1.686	0.471	-0.985
Average	223,155	79.867	290	41.08	9.68	0.64	0.591	0.832	0.868
Maximum	389,025	178.081	481	54.87	16.88	1.42	7.950	1.211	2.528
Std. Dev.	107,026	46.310	88	7.47	4.64	0.37	2.206	0.204	0.666
Skewness	-0.059	0.623	0.491	-0.040	-0.059	0.62	2.035	0.182	-0.316
Median	214,845	70.144	281	40.20	9.32	0.56	0.133	0.809	0.946

2974	A Bas	se Period of WY1989-2001 was selected for the development of the performance
2975	measu	re methodology. This period was selected for the following reasons:
2976		
2977	\succ	it represents a period with minimal implementation of source controls. With the
2978		selection of the Base Period to precede significant source control implementation, no
2979		additional calculation is necessary in the performance measure methodology to
2980		account for prior source control implementation,
2981	\triangleright	basin water management operations were similar to current operating conditions
2982		affecting nutrient loading,
2983	\triangleright	it traversed a wide range of hydrologic conditions (wet and dry years),
2984	\triangleright	reliable water quality and hydrologic data are available, and
2985	\triangleright	a very strong correlation exists between annual TP loads and rainfall, allowing for a
2986		performance measure methodology that explicitly incorporates hydrologic variability.
2987		
2988		ase Period is compared to the historical period of record and WY2001-2010 in Table
2989	3-31.	
2990		
2991		
2992		
2993		
2994		
2995		
2996		
2997		
2998		
2999		
3000		
3001		

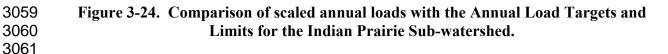
Table 3-31. Comparison of Base Period with period of record and WY2001-2010 data for the Indian Prairie Sub-watershed.

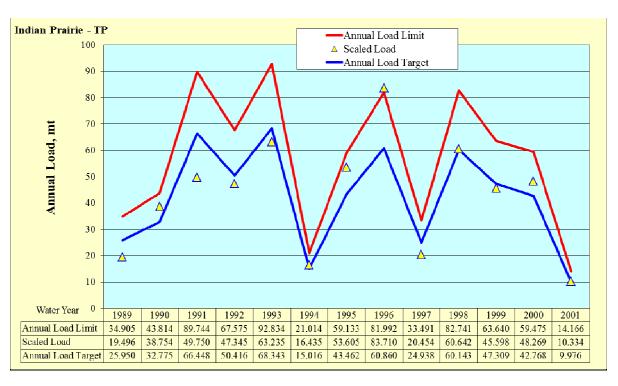
	Flow	TP Load	TP Conc	Rainfall	Unit Area	
Metric	AF	mt	μg/L	inches	Load, lbs/ac	
	Period of Record - WY1989-2010					
Annual Minimum	58,630	14.763 150		26.90	0.12	
Annual Average	223,155	79.867	290	41.08	0.64	
Annual Median	214,845	70.144	281	40.20	0.56	
Annual Maximum	389,025	178.081	481	54.87	1.42	
	Base	Period WY19	989-2001			
Annual Minimum	59,726	14.763	193	26.90	0.12	
Annual Average	201,061	61.278	247	42.92	0.49	
Annual Median	187,848	67.635	235	42.68	0.54	
Annual Maximum	363,576	119.585	390	54.87	0.95	
Diff	èrence betwee	en Period of R	ecord and Ba	se Period		
Annual Minimum	-1,096	0.000	-43	0.00	0.00	
Annual Average	22,095	18.589	43	-1.84	0.15	
Annual Median	26,997	2.508	46	-2.49	0.02	
Annual Maximum	25,449	58.496	91	0.00	0.47	
Annual Minimum	-2%	0%	-22%	0%	0%	
Annual Average	11%	30%	17%	-4%	30%	
Annual Median	14%	4%	19%	-6%	4%	
Annual Maximum	7%	49%	23%	0%	49%	
		WY2001-20	010			
Annual Minimum	58,630	14.763	150	26.90	0.12	
Annual Average	235,535	97.522	336	37.27	0.78	
Annual Median	262,778	101.673	348	38.00	0.81	
Annual Maximum	389,025	178.081	481	52.95	1.42	
Difference between WY2001-2010 and Base Period						
Annual Minimum	-1,096	0.000	-43	0.00	0.00	
Annual Average	34,474	36.245	89	-5.65	0.29	
Annual Median	74,930	34.038	113	-4.68	0.27	
Annual Maximum	25,449	58.496	91	-1.92	0.47	
Annual Minimum	-2%	0%	-22%	0%	0%	
Annual Average	17%	59%	36%	-13%	59%	
Annual Median	40%	50%	48%	-11%	50%	
Annual Maximum	7%	49%	23%	-3%	49%	

3008	3.4.2 Performance Measure Methodology						
3009							
3010	Based on the evaluation of individual land use source control effectiveness ranges described						
3011	in Section 2.6, the overall range of TP load reduction that could be accomplished through						
3012	collective source controls within the basin was estimated, and a load reduction target of 30						
3013	percent was determined to be reasonable and appropriate. Details are provided in Appendix						
3014	D and in Attachment 1.						
3015							
3016	An Annual Load Target and an Annual Load Limit were derived from the Base Period data						
3017	using a 30 percent load reduction. The Annual Load Target and Annual Load Limit for the						
3018	Indian Prairie Sub-watershed will be calculated according to the following equations and						
3019	explanation:						
3020							
3021	Target = exp $(-12.83843 + 4.02124 \text{ X} + 1.76267 \text{ C})$						
3022	Explained Variance = 91.1%, Standard Error of Regression ^{16} = 0.20346						
3023	Predictors (X a n d C) are calculated from the first two moments (m_1, m_2)						
3024	m_2) of the 12 monthly rainfall totals (r_i , i=1 to 12, inches) for the Evaluation						
3025	Year:						
3026	$m_1 = Sum [r_i] / 12$						
3027	$m_2 = Sum [r_i - m_1]^2 / 12$						
3028	$X = \ln (12 m_1)$						
3029	$C = [(12/11) m_2]^{0.5}/m_1$						
3030							
3031	Limit = Target * exp (1.37218 SE)						

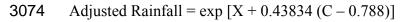
~ - -- -. . . .

¹⁶ The standard error of the regression equation is expressed in the same units as the transformed load, i.e., ln(metric tons).





3032	SE = standard error of the predicted ln(Load) for May-April
3033	interval
3034	$SE = 0.20346 \left[1 + 1/13 + 3.91995 \left(X - X_m \right)^2 + 3.19741 \left(C - C_m \right)^2 + 3.19741 \left(C - C_m \right)^2 \right]$
3035	$4.34342 (X-X_m) (C-C_m)]^{0.5}$
3036	Where:
3037	X = the natural logarithm of the 12-month total rainfall (ln(inches))
3038	C = is the coefficient of variation calculated from 12 monthly rainfall totals
3039	X_m = average value of the predictor in base period = 3.74445
3040	C_m = average value of the predictor in base period = 0.78800
3041	
3042	The first predictor (X) indicates that load increases with total annual rainfall. The second
3043	predictor (C) indicates that the load resulting from a given annual rainfall is higher when
3044	the distribution of monthly rainfall has higher variability. For a given annual rainfall, the
3045	lowest load occurs when rainfall is evenly distributed across months and the highest load
3046	occurs when all of the rain falls in one month. Real cases fall in between.
3047	
3048	A comparison of the scaled loads and the resulting Targets and Limits for the Base Period
3049	is presented in Figure 3-24. Annual TP loads at the sub-watershed outlet structures,
3050	adjusted to account for pass-through loads as described in Appendix A, will be evaluated
3051	against the performance measure described above.
3052	
3053	
3054	
3055	
3056	
3057	
3058	



3063

3064 Suspension of Performance Determination. The performance determination will be 3065 suspended due to rainfall conditions if the observed annual TP load, adjusted for regional 3066 projects (if present), from the sub-watershed exceeds the Annual Load Target and the 3067 adjusted rainfall falls outside the range of adjusted rainfall values for the Base Period (30.55 - 49.29 inches), as derived below. Rainfall conditions will be assessed by calculating an 3068 3069 adjusted rainfall amount which reflects the cumulative effect of the predictor variables of the 3070 Annual Load Target equation. The adjusted rainfall is the rainfall that would produce the 3071 equivalent annual load using the Annual Load Target equation by setting the value of C to its 3072 mean value for the calibration period.

- 3075 The calculated adjusted rainfall values, Annual Load Targets and Annual Load Limits for the
- 3076 WY1989-2010 period of record are summarized in Table 3-32.
- 3077
- 3078 The annual performance determination process will account for pass-through loads and
- 3079 regional projects, as applicable, and is presented in the flowchart in Figure 1-2.
- 3080

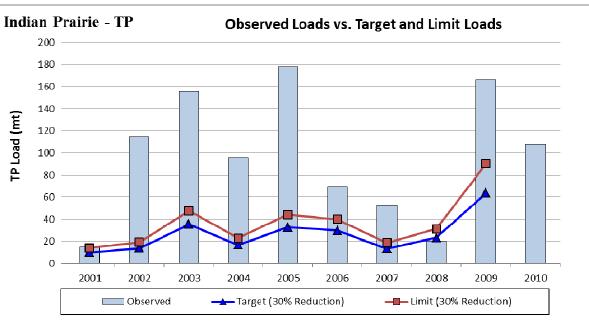
Table 3-32. Annual adjusted rainfall, Annual Load Targets and Limits for the period of record for the Indian Prairie Sub-watershed (Base Period: WY1989-2001).

Water	Observed	Observed	Ln(Rain)	CV	Target	Limit	Adjusted
Year	Load, mt	Rain, in			Load, mt	Load, mt	Rain, in
1989	27.851	40.18	3.69337	0.705	25.950	34.905	38.74
1990	55.363	40.56	3.70278	0.816	32.775	43.814	41.06
1991	71.071	49.86	3.90922	0.746	66.448	89.745	48.95
1992	67.635	46.49	3.83924	0.749	50.415	67.574	45.70
1993	90.336	47.18	3.85397	0.888	68.343	92.834	49.29
1994	23.478	37.70	3.62966	0.54	15.016	21.013	33.82
1995	76.579	49.45	3.90096	0.524	43.463	59.134	44.05
1996	119.585	47.60	3.86283	0.802	60.861	81.993	47.89
1997	29.220	37.40	3.62167	0.846	24.938	33.492	38.36
1998	86.631	54.87	4.00497	0.471	60.142	82.740	47.75
1999	65.140	42.68	3.75373	0.908	47.309	63.639	44.99
2000	68.956	37.09	3.61335	1.171	42.767	59.473	43.87
2001	14.763	26.90	3.29213	1.078	9.976	14.167	30.55
2002	114.458	30.24	3.40917	1.001	13.944	19.293	33.20
2003	155.802	43.78	3.77918	0.686	35.436	47.488	41.87
2004	95.566	36.24	3.59016	0.691	16.718	22.886	34.73
2005	178.081	37.99	3.63732	0.964	32.698	44.048	41.04
2006	69.216	38.07	3.63943	0.906	29.771	39.956	40.09
2007	52.797	28.31	3.34322	1.127	13.356	18.768	32.85
2008	20.593	38.01	3.63785	0.771	23.318	31.376	37.73
2009	166.168	40.21	3.69412	1.211	63.502	90.062	48.40
2010	107.779	52.95	3.96935	0.704	78.585	106.912	51.04

3084 3085 3086

Note: Shaded water years indicate the performance determination would have been suspended due to anomalous rainfall coupled with the observed load being greater than the Annual Load Target.

3087


3088

3089 Comparison to WY2001-2010. A comparison of the WY2001-2010 observed loads to the3090 Annual Load Targets and Limits is presented in Figure 3-25.

3091Figure 3-25. Comparison of WY2001-2010 observed loads with the Annual Load3092Targets and Limits for the Indian Prairie Sub-watershed.3093

3094 3095 3096 3097

Notes: 1. The performance determination for WY2010 would have been suspended due to adjusted rainfall above the maximum value during the Base Period coupled with the observed load being greater than the Load Target.

3098 2. The Base Period extended from WY1989-2001.3099

3100 **Exceedance Frequency Analysis.** As shown in Figure 3-24, although the scaled observed 3101 loads fall above the Annual Load Targets less than half the time (five out of thirteen years, or 3102 38 percent), the scaled observed load for WY1996 exceeded the calculated Annual Load 3103 Limit. In accordance with the proposed performance determination process discussed in 3104 Section 2.6, having the observed load exceed the Annual Load Limit would prevent the basin 3105 from meeting its performance measure for that year. In the case of the scaled Base Period data, this is an example of a Type I error¹⁷, or "false positive" - when the performance 3106 3107 method suggests a lack of compliance when the basin's load actually achieves the long-term

¹⁷ The Type I error rate is the probability that the performance measure methodology will reject the null hypothesis (i.e., a determination that the TP load does not meet the performance measure) when in reality the null hypothesis is true – the annual load meets the performance measure, and is therefore also known as the false positive rate.

3108 reduction goals. While this occurrence is not common, it is statistically possible. The use of 3109 the upper 90 percent confidence limit for the Annual Load Limit is consistent with the 3110 District's Chapter 40E-63 F.A.C., and has a theoretical Type I error (i.e., false positive) rate 3111 of approximately ten percent. Using the approach described in Section 2.6, an approximation 3112 of the cumulative exceedance frequency for the determination methodology was estimated 3113 using a Monte Carlo approach based on the annual rainfall and the annual TP loads of the 3114 Base Period (Table 3-33). Because the TP loads and rainfall statistics from the Base Period 3115 do not perfectly describe normal distributions (e.g., the medians are generally less than the 3116 means), the methodology includes conditional probabilities, and because the random number 3117 generator is imperfect, the exceedance frequencies deviate from the theoretical values shown 3118 in the second column. However, the results are determined to be reasonable and defensible 3119 since the cumulative exceedance frequency is less than the theoretical value of approximately 3120 17.5 percent.

3121

Table 3-33. Exceedance frequencies for the proposed determination methodology for
 the Indian Prairie Sub-watershed.

Component of Performance Assessment	Theoretical Exceedance Frequency	Method Exceedance Frequency
Step 1. Load > Annual Load Target?	50%	50%
Step 2. Suspend assessment if Adj. Rain is outside the range and Load > Annual Load Target	<20%	10.5%
Step 3. Load > Annual Load Target for 3 consecutive years?	<12.5%	9.3%
Step 4. Load > Annual Load Limit?	<10%	4.4%
Cumulative Exceedance Frequency	<17.5%	12.5%

- 3126
- 3127

3128 3.5 Fisheating Creek-Nicodemus Slough Sub-watershed

The Fisheating Creek-Nicodemus Slough Sub-watershed comprises 318,042 acres located directly west of Lake Okeechobee (**Figure 3-26**). The sub-watershed contains two summary basins that discharge to the lake in close proximity: the Fisheating Creek (FECR) Summary Basin and the Nicodemus Slough Summary Basin. Flow and TP monitoring sites are identified in **Tables C-1** and **C-2**.

3135

3129

3136 District staff identified the rainfall stations considered to be representative of the Fisheating

3137 Creek-Nicodemus Slough Sub-watershed and summary basins for the period WY1976-2010.

3138 A schematic of the sub-watershed with the various rain stations is presented in Figure 3-27.

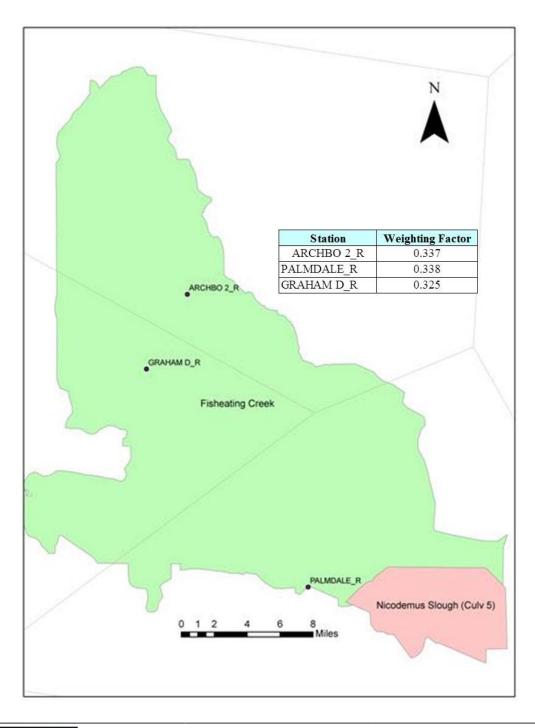
3139 Monthly rainfall data and weighting factors for the rainfall stations for each summary basin

3140 were developed and provided by the District. Weighting factors are shown in Figure 3-27.


3141 Missing daily data were filled in with values of an adjacent station.

3142 The following sections describe the derivation of the performance measure methodologies3143 for the summary basins within the Fisheating Creek-Nicodemus Slough Sub-watershed.

Figure 3-26. Fisheating Creek-Nicodemus Slough Sub-watershed boundary and discharge monitoring locations. 3161


3162

Gary Goforth, Inc. February 2013

- 3163Figure 3-27. Schematic of Fisheating Creek-Nicodemus Slough Sub-watershed and the3164selected rainfall stations.
- 3165

3166

Gary Goforth, Inc. February 2013

3.5.1 Fisheating Creek Summary Basin 3167 3168 3169 The Fisheating Creek Summary Basin comprises 298,713 acres and is the only basin in the 3170 Lake Okeechobee Watershed with an uncontrolled "natural" discharge, i.e., Fisheating Creek 3171 (SFWMD 2008). Fisheating Creek originates in western Highlands County and flows south 3172 through Cypress Swamp and into Glades County with an average gradient of 0.5 foot per 3173 mile (SFWMD 2011a). From central Glades County, water leaves the creek channel and 3174 flows east through Cowbone Marsh into Lake Okeechobee. Levees have been constructed 3175 roughly parallel to Fisheating Creek near its outlet to the lake. 3176 3177 3.5.1.1 Background 3178 3179 Annual flow and TP data for discharges from the Fisheating Creek Summary Basin, as 3180 monitored at the SR 78 bridge near Lakeport, are summarized in Table 3-34. For the 3181 development of the performance measure methodology, a Base Period of WY1998-2008 was 3182 selected for the following reasons. 3183 > it represents a period with minimal implementation of source controls. With the 3184 selection of the Base Period to precede significant source control implementation, no 3185 additional calculation is necessary in the performance measure methodology to 3186 account for prior source control implementation. 3187 > basin water management operations were similar to current operating conditions 3188 affecting nutrient loading, in that the basin has remained unregulated (e.g., no water 3189 control structures exist to regulate flows) from the selected base period to present, 3190 > it represents a period of relatively constant land use practices, 3191 ▶ it traversed a wide range of hydrologic conditions (wet and dry years), 3192 reliable water quality and hydrologic data are available, and \geq 3193 > a strong correlation exists between annual TP loads and rainfall, allowing for a 3194 performance measure methodology that explicitly incorporates hydrologic variability.

- 3195 The Base Period is compared to the historical period of record and WY2001-2010 in Table
- **3-35.**

Table 3-34. Summary	of historical data	for the Fisheating	Creek Summary Basin.
---------------------	--------------------	--------------------	----------------------

			FWM		Unit Area	Unit Area	Ra	Rainfall Characteristics		
Water	Flow	TP Load	TP Conc	Rainfall	Runoff	Load	Kurtosis	Coef. Of Var.	Skewness	
Year	AF	mt	μg/L	inches	in/yr	lbs/ac	К	CV	S	
1998	535,316	129.919	197	67.22	21.50	0.96	0.270	0.527	-0.132	
1999	183,933	45.813	202	44.68	7.39	0.34	-0.685	0.789	0.648	
2000	237,576	49.094	168	62.08	9.54	0.36	-0.131	0.958	0.991	
2001	13,727	2.719	161	33.31	0.55	0.02	0.597	0.980	0.959	
2002	329,509	135.612	334	54.36	13.24	1.00	-0.290	0.946	0.914	
2003	409,394	103.714	205	78.23	16.45	0.77	0.345	0.744	0.851	
2004	359,710	67.618	152	53.67	14.45	0.50	-0.804	0.818	0.598	
2005	391,353	137.727	285	60.14	15.72	1.02	1.116	0.934	1.233	
2006	385,019	77.389	163	47.89	15.47	0.57	0.067	1.053	0.993	
2007	163,419	64.542	320	43.14	6.56	0.48	7.454	1.489	2.491	
2008	41,528	11.236	219	42.21	1.67	0.08	0.142	0.746	0.935	
2009	222,597	77.283	281	40.01	8.94	0.57	-0.181	1.161	1.158	
2010	197,349	77.137	317	52.29	7.93	0.57	-1.111	0.691	0.307	
Minimum	13,727	2.719	152	33.31	0.55	0.02	-1.111	0.527	-0.132	
Average	266,956	75.369	229	52.25	10.72	0.56	0.522	0.910	0.919	
Maximum	535,316	137.727	334	78.23	21.50	1.02	7.454	1.489	2.491	
Std. Dev.	151,236	43.244	67	12.36	6.08	0.32	2.166	0.242	0.599	
Skewness	-0.085	-0.057	0.399	0.597	-0.085	-0.06	3.133	0.938	1.142	
Median	237,576	77.137	205	52.29	9.54	0.57	0.067	0.934	0.935	

3218 Table 3-35. Comparison of Base Period with period of record and WY2001-2010 data for the Fisheating Creek Summary Basin.

	Flow	TP Load	TP Conc	Rainfall	Unit Area
Metric	AF	mt	μg/L	inches	Load, lbs/ac
	Period of	f Record - WY			, , , , , , , , , , , , , , , , , , ,
Annual Minimum	13,727	2.719	152	33.31	0.02
Annual Average	266,956	75.369	229	52.25	0.56
Annual Median	237,576	77.137	205	52.29	0.57
Annual Maximum	535,316	137.727	334	78.23	1.02
	Base	Period WY19	98-2008		
Annual Minimum	13,727	2.719	152	33.31	0.02
Annual Average	277,317	75.035	219	53.36	0.55
Annual Median	329,509	67.618	202	53.67	0.50
Annual Maximum	535,316	137.727	334	78.23	1.02
Diffe	rence betwee	n Period of Re	cord and Bas	se Period	
Annual Minimum	0	0.000	0	0.00	0.00
Annual Average	-10,361	0.335	10	-1.11	0.00
Annual Median	-91,933	9.519	3	-1.38	0.07
Annual Maximum	0	0.000	0	0.00	0.00
Annual Minimum	0%	0%	0%	0%	0%
Annual Average	-4%	0%	4%	-2%	0%
Annual Median	-28%	14%	1%	-3%	14%
Annual Maximum	0%	0%	0%	0%	0%
		WY2001-20	10		
Annual Minimum	13,727	2.719	152	33.31	0.02
Annual Average	251,361	75.498	243	50.53	0.56
Annual Median	276,053	77.210	250	50.09	0.57
Annual Maximum	409,394	137.727	334	78.23	1.02
	erence betwee	en WY2001-2			
Annual Minimum	0	0.000	0	0.00	0.00
Annual Average	-25,956	0.463	24	-2.83	0.00
Annual Median	-53,456	9.592	48	-3.58	0.07
Annual Maximum	-125,922	0.000	0	0.00	0.00
Annual Minimum	0%	0%	0%	0%	0%
Annual Average	-9%	1%	11%	-5%	1%
Annual Median	-16%	14%	24%	-7%	14%
Annual Maximum	-24%	0%	0%	0%	0%

3223	3.5.1.2	Performance Measure Methodology							
3224 3225	Based on	the evaluation of individual land use source control effectiveness ranges described							
3226	in Section	in Section 2.6, the overall range of TP load reduction that could be accomplished through							
3227	collective	collective source controls within the basin was estimated, and a load reduction target of 30							
3228	percent w	vas determined to be reasonable and appropriate. Details are provided in Appendix							
3229	D and in .	Attachment 1.							
3230									
3231	An Annu	al Load Target and an Annual Load Limit were derived from the Base Period data							
3232	using a 30	0 percent load reduction. The Annual Load Target and Annual Load Limit for the							
3233	Fisheatir	ng Creek Summary Basin will be calculated according to the following equations							
3234	and expla	nation:							
3235 3236	Target = -	-340.304899 + 99.44445 X							
3237	Ex	xplained Variance = 53.5%, Standard Error of Regression = 23.828 mt							
3238	Pr	redictor X is calculated from the first moment (m_1) of the 12 monthly rainfall							
3239	to	tals (r_i , i=1 to 12, inches) for the Evaluation Year:							
3240	m	$_{1} = Sum [r_{i}] / 12$							
3241	Х	$= \ln (12 m_1)$							
3242	Limit =	Target + 1.38303 SE							
3243	SI	E = standard error of the Target for May-April interval							
3244	SI	$E = 23.82794 \left[1 + 1/11 + (X-X_m)^2 / 0.59477 \right]^{0.5}$							
3245	Where:								
3246	Х	= the natural logarithm of the 12-month total rainfall (ln(inches))							
3247	\mathbf{X}_{1}	m = average value of the predictor in base period = 3.95024							
3248									
3249 3250	The predi	ctor X indicates that load increases with total annual rainfall.							

A comparison of the scaled loads and the resulting Targets and Limits for the Base Period
are presented in Figure 3-28. Annual TP loads monitored at the SR 78 bridge near Lakeport
will be evaluated against the performance measure described above.

Suspension of Performance Determination. The performance determination will be suspended due to rainfall conditions if the observed annual TP load, adjusted for regional projects (if present), from the basin exceeds the Annual Load Target and the rainfall falls outside the range of rainfall values for the Base Period (33.31 – 78.23 inches). The calculated Annual Load Targets and Annual Load Limits for the rainfall conditions observed during the period of record are summarized in **Table 3-36**.

3262 The annual performance determination process will account for regional projects, as 3263 applicable, and is presented in the flowchart in **Figure 1-2**.

Figure 3-28. Comparison of scaled loads with the Annual Load Targets and Limits for the Fisheating Creek Summary Basin.

3289 3290 3291 3292 3293 3294

Table 3-36. Estimates of annual Load Targets and Limits for the historical period ofrecord for the Lower Kissimmee Sub-watershed (Base Period: WY1998-2008).

Water	Observed	In(Rain)	Target	Limit
Year	Load, mt	In(inches)	Load, mt	Load, mt
1998	129.919	4.20797	78.154	114.293
1999	45.813	3.79953	37.537	72.555
2000	49.094	4.12842	70.244	105.496
2001	2.719	3.50586	8.333	47.644
2002	135.612	3.99563	57.038	91.513
2003	103.714	4.35965	93.238	131.849
2004	67.618	3.98285	55.767	90.216
2005	137.727	4.09668	67.087	102.072
2006	77.389	3.86891	44.437	79.032
2007	64.542	3.76445	34.049	69.373
2008	11.236	3.74266	31.882	67.427
2009	77.283	3.68913	26.559	62.742
2010	77.137	3.95681	53.178	87.599

- 3296 **Comparison to WY2001-2010.** A comparison of the WY2001-2010 observed loads to the
- 3297 Annual Load Targets and Limits is presented in Figure 3-29.
- 3298

3299 Figure 3-29. Comparison of WY2001-2010 observed loads to the Annual Load Targets 3300 and Limits for the Fisheating Creek Summary Basin. 3301

- Fisheating Cr. TP **Observed Loads vs. Target and Limit Loads** 160 140 120 TP Load (mt) 100 80 60 40 20 0 2002 2003 2001 2004 2005 2006 2007 2008 2009 2010 Observed -Limit (30% Reduction) Target (30% Reduction)
- 3302 3303

3307 45 percent), the scaled observed load for WY2002 exceeded the calculated Annual Load

- 3308 Limit. In accordance with the proposed performance determination process discussed in
- 3309 Section 2.6, having the observed load exceed the Annual Load Limit would prevent the basin 3310 from meeting its performance measure for that year. In the case of the scaled Base Period
- data, this is an example of a Type I error¹⁸, or "false positive" when the performance 3311

¹⁸ The Type I error rate is the probability that the performance measure methodology will reject the null hypothesis (i.e., a determination that the TP load does not meet the performance measure) when in reality the

Note: The Base Period extended from WY1998-2008.

³³⁰⁴

³³⁰⁵ Exceedance Frequency Analysis. As shown in Figure 3-28, although the scaled observed 3306 loads fall above the Annual Load Targets less than half the time (five out of eleven years, or

3312 method suggests a lack of compliance when the basin's load actually achieves the long-term 3313 reduction goals. While this occurrence is not common, it is statistically possible. The use of 3314 the upper 90 percent confidence limit for the Annual Load Limit is consistent with the 3315 District's Chapter 40E-63 F.A.C., and has a theoretical Type I error (i.e., false positive) rate 3316 of approximately ten percent. Using the approach described in Section 2.6, an approximation 3317 of the cumulative exceedance frequency for the determination methodology was estimated 3318 using a Monte Carlo approach based on the annual rainfall and the annual TP loads of the 3319 Base Period (Table 3-37). Because the TP loads and rainfall statistics from the Base Period 3320 do not perfectly describe normal distributions (e.g., the medians are generally less than the 3321 means), the methodology includes conditional probabilities, and because the random number 3322 generator is imperfect, the exceedance frequencies deviate from the theoretical values shown 3323 in the second column. However, the results are determined to be reasonable and defensible 3324 since the cumulative exceedance frequency is less than the theoretical value of approximately 3325 17.5 percent.

3326

3327

3328

3329

Table 3-37. Exceedance frequencies for the proposed determination methodology forthe Fisheating Creek Summary Basin.

Component of Performance Assessment	Theoretical Exceedance Frequency	Method Exceedance Frequency
Step 1. Load > Annual Load Target?	50%	50%
Step 2. Suspend assessment if Rain is outside the range and Load > Annual Load Target	<20%	4.0%
Step 3. Load > Annual Load Target for 3 consecutive years?	<12.5%	11.6%
Step 4. Load > Annual Load Limit?	<10%	5.7%
Cumulative Exceedance Frequency	<17.5%	15.7%

3330 3331 3332

null hypothesis is true – the annual load meets the performance measure, and is therefore also known as the false positive rate.

3.5.2 Nicodemus Slough Summary Basin

3335 The following sections present a description of the Nicodemus Slough Summary Basin and a3336 summary of historical flow and TP levels.

3337 3.5.2.1 Background

3338

3333 3334

3339 The Nicodemus Slough Summary Basin comprises 19,329 acres located west of Lake 3340 Okeechobee and south of the Fisheating Creek Summary Basin. The connection to Lake 3341 Okeechobee is through control structure Culvert 5, located at the crossing of SR 78 and the 3342 levee LD-3. The purpose of Culvert 5 is to provide releases from Lake Okeechobee to the 3343 lower reaches of Nicodemus Slough and to afford gravity drainage of that slough into Lake 3344 Okeechobee during flood periods when the lake is lower than the slough. Reliable flow data 3345 for the Nicodemus Slough Summary Basin at Culvert 5 are available only from March 2008 3346 to the present. In that time, only four TP samples were collected on days with flow, hence 3347 there is insufficient flow and TP data available to adequately analyze alternative Base 3348 Periods for the basin. Another structure, S-342N, is located on the southern boundary of the 3349 basin, and minimal flow and TP data are available. Due to the lack of a long-term data set of 3350 sufficient quality, insufficient data were available for a complete historical data analysis. 3351 Monthly summaries are provided in Table 3-38 for WY2009 and WY2010.

- 3353
- 3354
- 3355
- 3356
- 3357

3358Table 3-38. Monthly summary of flow and TP data for the Nicodemus Slough Summary

3359

Basin.									
	Flow	TP load	TP Conc	Rainfall					
Date	AF	kg	μg/L	inches					
200805	0	0		0.520					
200806	0	0		10.690					
200807	1236	139	91	6.640					
200808	10555	1199	92	12.730					
200809	17	2	95	4.230					
200810	0	0		3.530					
200811	3	1	270	0.400					
200812	0	0		1.540					
200901	1	0	0	1.060					
200902	0	0		0.190					
200903	0	0		0.900					
200904	7	2	232	0.990					
200905	0	0		7.410					
200906	269	109	328	10.270					
200907	2006	176	71	10.930					
200908	95	9	77	7.790					
200909	63	6	77	3.350					
200910	3	0	0	0.060					
200911	0	0		0.810					
200912	0	0		6.220					
201001	3	0	0	1.950					
201002	0	0		1.850					
201003	301	46	124	8.030					
201004	390	62	129	6.780					

3360

3361

3362 3.5.2.2 Performance Measure Methodology

3363

3364 Since this summary basin has historically contributed a small percentage of the annual Lake 3365 Okeechobee total phosphorus load (less than one percent), no performance metric will be 3366 assigned to this area. However, the water quality from the basin will be assessed annually to 3367 determine if there is an increasing trend.

- 3368
- 3369
- 3370
- 3371
- 3372
- 3373

3374 3.6 Lake Istokpoga Sub-watershed

3376 The following sections present a description of the Lake Istokpoga Sub-watershed, a
3377 summary of historical flow and TP levels, the selection of Reference Periods, and the
3378 derivation of the resulting performance indicators for tributaries within the sub-watershed.

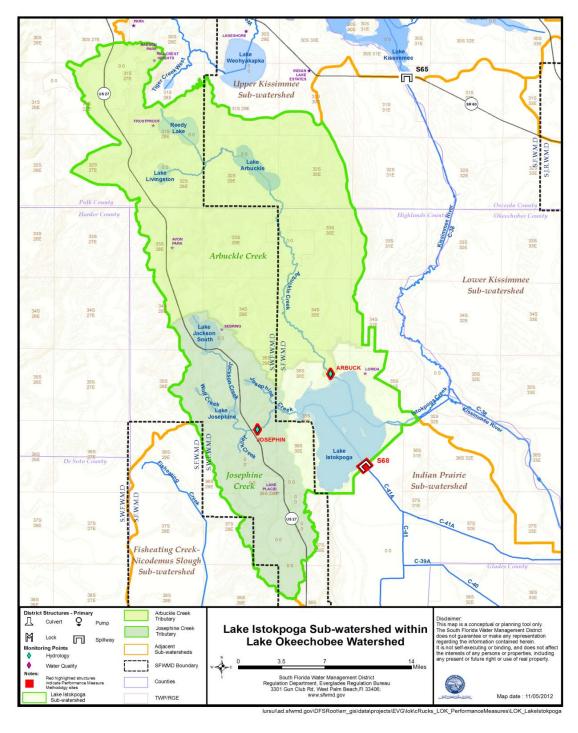
3379 3380

3375

3.6.1 Background

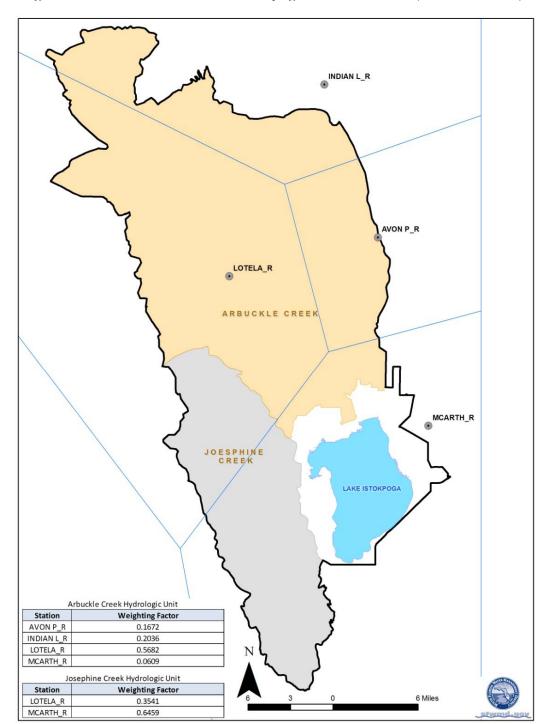
The Lake Istokpoga Sub-watershed comprises 394,203 acres located northeast of Lake Okeechobee (**Figure 3-30**). The Lake Istokpoga sub-watershed is located to the west and north (upstream) of Lake Istokpoga. Lake Istokpoga receives direct runoff from adjacent land areas and inflows from Josephine Creek and Arbuckle Creek. The primary outlet from Lake Istokpoga is through the S-68 structure¹⁹, which releases water through a series of canals southeastward to both Lake Okeechobee and the Kissimmee River. The location of S-68 is shown in **Figure 3-30**.

3388


3389 District staff identified the rainfall stations considered to be representative of the Lake Istokpoga Sub-watershed for the period WY1976-2010. A schematic of the sub-watershed 3390 3391 with the various rain stations is presented in Figure 3-31. Monthly rainfall data and 3392 weighting factors for the rainfall stations were developed and provided by the District. Because of the nutrient attenuation effect of Lake Istokpoga, the nutrient loads discharged at 3393 3394 S-68 may not be representative of stormwater runoff from within the sub-watershed, and thus 3395 the criteria for the establishment of a performance measure at S-68 were not met. Therefore, 3396 tributaries upstream of Lake Istokpoga were evaluated to see if there were sufficient data to 3397 develop performance measure methodologies in the individual tributaries.

¹⁹ A secondary structure, G-85, is located along the Istokpoga Canal and historically has discharged minimal flow. This structure is operated very infrequently by manipulation of the flashboards; normally, all flashboards are in place (SFWMD Structure Books).

3399Figure 3-30. Lake Istokpoga Sub-watershed boundary and discharge monitoring3400locations (from SFWMD).


3401

Gary Goforth, Inc. February 2013

3402

Figure 3-31. Schematic of Lake Istokpoga Sub-watershed (from SFWMD).

3403

Gary Goforth, Inc. February 2013

3404 Stormwater runoff from roughly eighty-six percent of the sub-watershed of the sub-3405 watershed flows into Lake Istokpoga via Arbuckle Creek and Josephine Creek. The 3406 remaining portion of the sub-watershed is Lake Istokpoga itself and the surrounding land 3407 area that discharges into Lake Istokpoga via sheet flow and is not monitored. A review of 3408 available data identified monitoring sites located on two major tributaries upstream of Lake 3409 Istokpoga. These discharge monitoring locations are shown in **Figure 3-31** and are further 3410 described below:

3411

One site is located on Arbuckle Creek (ARBUCK), which flows into Lake Istokpoga
 from the north. Arbuckle Creek has a tributary area of approximately 246,264 acres,
 or roughly sixty-three percent of the Lake Istokpoga Sub-watershed area. Flow data
 are recorded at a nearby USGS gauge (Arbuckle Creek near De Soto City, FL: ID no.
 02270500).

- 3417
 2. One site is located on Josephine Creek (JOSEPHIN) (LI02362923), which flows into
 3418
 3418 Lake Istokpoga. Shingle Creek has a tributary area of approximately 90,607 acres, or
 3419 roughly twenty-three percent of the Lake Istokpoga Sub-watershed area. Flow data
 3420 are recorded at a nearby USGS gauge (Josephine Creek near De Soto City, FL: ID no.
 3421 02271500).
- 3422

Both water quality and flow data were available for the tributaries in the Lake Istokpoga Subwatershed. However, performance measures were not developed for these tributaries because
the boundaries were not well defined. Instead, prediction equations for <u>performance</u>
<u>indicators</u> are recommended for the upstream tributaries at Arbuckle Creek and Josephine
Creek. The following section summarizes the performance indicators for Arbuckle Creek and
Josephine Creek.

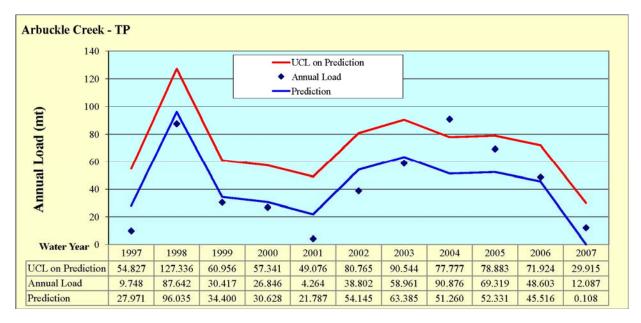
3430	3.6.1.1 Performance Measure Methodology
3431	
3432	Site 1: Arbuckle Creek
3433	Annual flow and TP data for discharges from the Arbuckle Creek Tributary are summarized
3434	in Table 3-39. For the development of the performance indicator, a Reference Period of
3435	WY1997-2007 was selected for the following reasons:
3436	\succ it represents a period with minimal implementation of source controls. With the
3437	selection of the Reference Period to precede significant source control
3438	implementation, no additional calculation is necessary in the performance indicator
3439	to account for prior source control implementation,
3440	it represents a period of relatively constant land use practices,
3441	 reliable water quality and hydrologic data are available, and
3442	> a strong correlation exists between annual TP loads and rainfall, allowing for a
3443	performance indicator that explicitly incorporates hydrologic variability
3444	
3445	The Reference Period is compared to the historical period of record and WY2001-2010 in
3446	Table 3-40.
3447	
3448	
3449	
3450	
3451	
3452	
3453	
3454	
3455	
3456	

Table 3-39. Summary of historical data for ARBUCK, the outlet structure for theArbuckle Creek Tributary for the WY 1992-2010 period of record.

			FWM			Unit Area	Unit Area	Ra	infall Character	istics
Water	Flow	TP Load	TP Conc	Rainfall	Area	Runoff	Load	Kurtosis	Coef. Of Var.	Skewness
Year	AF	mt	μg/L	inches	acres	in/yr	lbs/ac	К	CV	S
1992	190,774	21.775	93	53.87	246,266	9.30	0.19	-0.193	0.852	0.829
1993	213,813	25.570	97	59.28	246,266	10.42	0.23	1.399	0.914	1.448
1994	73,471	9.051	100	43.87	246,266	3.58	0.08	-1.138	0.734	0.593
1995	255,078	25.216	80	60.60	246,266	12.43	0.23	3.421	0.765	1.822
1996	234,590	37.065	128	55.91	246,266	11.43	0.33	-0.762	0.765	0.556
1997	98,572	9.748	80	42.95	246,266	4.80	0.09	-1.440	0.644	-0.011
1998	515,250	87.642	138	77.45	246,266	25.11	0.78	0.053	0.436	-0.393
1999	165,150	30.417	149	45.41	246,266	8.05	0.27	0.749	0.954	1.261
2000	198,903	26.846	109	43.95	246,266	9.69	0.24	0.447	0.856	0.978
2001	35,771	4.264	97	40.71	246,266	1.74	0.04	-0.498	1.097	0.922
2002	292,832	38.802	107	53.88	246,266	14.27	0.35	-1.289	0.712	0.256
2003	293,748	58.961	163	58.37	246,266	14.31	0.53	-0.536	0.724	0.594
2004	261,554	90.876	282	52.55	246,266	12.74	0.81	-0.899	0.804	0.656
2005	257,547	69.319	218	53.04	246,266	12.55	0.62	0.991	0.871	1.134
2006	341,771	48.603	115	50.00	246,266	16.65	0.44	-0.269	0.882	0.682
2007	87,730	12.087	112	33.74	246,266	4.27	0.11	-0.901	0.784	0.825
2008	63,589	4.741	60	40.42	246,266	3.10	0.04	1.918	0.749	1.060
2009	161,959	38.276	192	39.80	246,266	7.89	0.34	2.784	1.057	1.599
2010	110,761	24.379	178	47.15	246,266	5.40	0.22	-1.805	0.664	-0.002
Minimum	35,771	4.264	60	33.74	246,266	1.74	0.04	-1.805	0.436	-0.393
Average	202, 782	34.928	140	50.16	246,266	9.88	0.31	0.107	0.803	0.779
Maximum	515,250	90.876	282	77.45	246,266	25.11	0.81	3.421	1.097	1.822
Std. Dev.	116,298	25.944	55	10.01	0	5.67	0.23	1.448	0.150	0.564
Skewness	0.874	0.965	1.337	0.919	0.000	0.874	0.97	0.942	-0.196	-0.201
Median	198,903	26.846	112	50.00	246,266	9.69	0.24	-0.269	0.784	0.825

Table 3-40. Comparison of the Reference Period with the period of record data for Arbuckle Creek.

	Flow	TP Load	TP Conc	Rainfall	Load
Metric	AF	mt	μg/L	inches	lbs/ac
	Period of	Record - WY			
Annual Minimum	35,771	4.264	60	33.74	0.04
Annual Average	202,782	34.928	140	50.16	0.31
Annual Median	198,903	26.846	112	50.00	0.24
Annual Maximum	515,250	90.876	282	77.45	0.81
	Reference	ce Period WY	1997-2007		
Annual Minimum	35,771	4.264	80	33.74	0.04
Annual Average	231,712	43.415	152	50.19	0.39
Annual Median	257,547	38.802	115	50.00	0.35
Annual Maximum	515,250	90.876	282	77.45	0.81
Differe	nce between P	eriod of Reco	ord and Refer	ence Period	
Annual Minimum	0	0.000	-20	0.00	0.000
Annual Average	-28,929	-8.487	-12	-0.03	-0.076
Annual Median	-58,644	-11.956	-3	0.00	-0.107
Annual Maximum	0	0.000	0	0.00	0.000
Annual Minimum	0%	0%	-25%	0%	0%
Annual Average	-12%	-20%	-8%	0%	-20%
Annual Median	-23%	-31%	-3%	0%	-31%
Annual Maximum	0%	0%	0%	0%	0%
		WY2001-20	10		
Annual Minimum	35,771	4.264	60	33.74	0.04
Annual Average	190,726	39.031	166	46.97	0.35
Annual Median	209,753	38.539	139	48.58	0.35
Annual Maximum	341,771	90.876	282	58.37	0.81
Differ	ence between	WY2001-201	0 and Refere	ence Period	
Annual Minimum	0	0.000	-20	0.00	0.00
Annual Average	-40,985	-4.384	14	-3.22	-0.04
Annual Median	-47,794	-0.263	24	-1.43	0.00
Annual Maximum	-173,479	0.000	0	-19.08	0.00
Annual Minimum	0%	0%	-25%	0%	0%
Annual Average	-18%	-10%	9%	-6%	-10%
Annual Median	-19%	-1%	21%	-3%	-1%
Annual Maximum	-34%	0%	0%	-25%	0%



3477	Based on the fact that the annual median total phosphorus concentration for the period of
3478	record (112 µg/l) is below the Numeric Nutrient Criteria (120 µg/l) (Chapter 62-302,
3479	F.A.C.) it is recommended that no reduction goal be applied to tributary. An Annual Load
3480	Target and an Annual Load Limit for the Arbuckle Creek Tributary will be calculated
3481	according to the following equations and explanation:
3482	
3483	Target = -406.10066 + 115.44341 X
3484	Explained Variance = 67.5 percent, Standard Error of Regression Equation = 18.275
3485	Predictor X is calculated from the first moment (m_1) of the 12 monthly rainfall totals
3486	$(r_i, i=1 \text{ to } 12, \text{ inches})$ for the Evaluation Year:
3487	$m_1 = Sum [r_i] / 12$
3488	$X = \ln (12 m_1)$
3489 3490	Limit = Target + 1.38303 SE
3490 3491	
	SE = standard error of the Target for May-April interval SE = 18.2750($11 + 1/11 + (X, Y, y)^2 / 0.4(0.221)^{0.5}$
3492	$SE = 18.27506 \left[1 + 1/11 + (X-X_m)^2 / 0.46933\right]^{0.5}$
3493 3494	Where:
3494 3495	
	X = the natural logarithm of the 12-month total rainfall (ln(inches)) X = every set where of the predictor in Performance Period = 2.80282
3496	X_m = average value of the predictor in Reference Period = 3.89382
3497	
3498 3499	The predictor X indicates that load increases with total annual rainfall.
3500	A comparison of the observed loads and the resulting Targets and Limits for the Reference
3501	Period are presented in Figure 3-32. Annual TP loads at the tributary outlet monitoring
3502	location will be evaluated against the performance measure described above.
3503	

Figure 3-32. Comparison of observed annual loads with the Annual Load Targets and Limits for the Arbuckle Creek Tributary.

3507 3508

Suspension of Performance Determination. The performance determination will be suspended due to rainfall conditions if the observed annual TP load from the basin, adjusted for regional projects (if present), exceeds the Annual Load Target and the rainfall falls outside the range of rainfall values for the Reference Period (33.74 – 77.45 inches). The calculated Annual Load Targets and Annual Load Limits for the rainfall conditions observed during the period of record are summarized in **Table 3-41**.

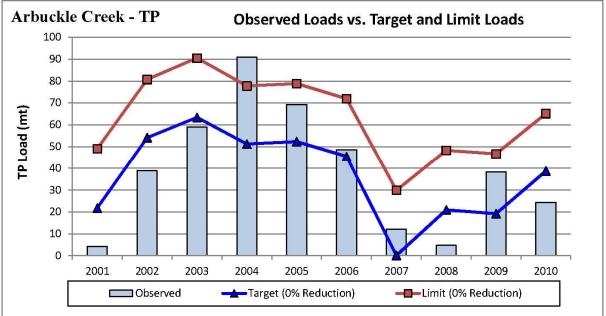
3515

3516 The annual performance determination process will account for regional projects, as 3517 applicable, and is presented in the flowchart in **Figure 1-2**.

3518

3519 Comparison to WY2001-2010. A comparison of the WY2001-2010 observed loads to the
3520 Annual Load Targets and Limits is presented in Figure 3-33.

3522	
3523	


 Table 3-41. Annual adjusted rainfall for the historical period of record for the Arbuckle Creek Tributary (Reference Period: WY1997-2007).

Arbuckie Creek Iributary (Kelerence Feriod: w 11997-2007).							
Water	Observed	In(Rain)	Target	SE	Limit		
Year	Load, mt	In(inches)	Load, mt	Load, mt	Load, mt		
1997	9.748	3.76004	27.971	19.418	54.827		
1998	87.642	4.34963	96.035	22.632	127.336		
1999	30.417	3.81573	34.400	19.201	60.956		
2000	26.846	3.78305	30.628	19.315	57.341		
2001	4.264	3.70647	21.787	19.731	49.076		
2002	38.802	3.98676	54.145	19.248	80.765		
2003	58.961	4.06680	63.385	19.638	90.544		
2004	90.876	3.96177	51.260	19.174	77.777		
2005	69.319	3.97105	52.331	19.199	78.883		
2006	48.603	3.91202	45.516	19.094	71.924		
2007	12.087	3.51868	0.108	21.552	29.915		
2008	4.741	3.69932	20.961	19.780	48.318		
2009	38.276	3.68387	19.178	19.892	46.690		
2010	24.379	3.85333	38.741	19.118	65.182		

3525

3526 Fig 3527 A 3528

Figure 3-33. Comparison of WY2001-2010 loads with Reference Period loads and Annual Load Targets, adjusted for hydrologic variability, for the Boggy Creek Tributary.

3529 3530

Note: The Reference Period extended from WY1997-2007.

3531 **Exceedance Frequency Analysis.** As shown in Figure 3-32, although the scaled observed 3532 loads fall above the Annual Load Target less than half the time (four out of eleven years, or 3533 36 percent), these exceedances occur in successive years. Using the approach described in 3534 Section 2.6, an approximation of the cumulative exceedance frequency for the determination 3535 methodology was estimated using a Monte Carlo approach based on the annual rainfall and 3536 the annual TP loads of the Base Period (Table 3-42). Because the TP loads and rainfall 3537 statistics from the Base Period do not perfectly describe normal distributions (e.g., the 3538 medians are generally less than the means), the methodology includes conditional probabilities, and because the random number generator is imperfect, the exceedance 3539 3540 frequencies deviate from the theoretical values shown in the second column. However, the 3541 results are determined to be reasonable and defensible since the cumulative exceedance 3542 frequency is less than the theoretical value of approximately 17.5 percent.

- 3543
- 3544 3545 3546

Table 3-42 .	Exceedance frequencies for the proposed determination methodology for
	the Arbuckle Creek basin.

Component of Performance Assessment	Theoretical Exceedance	Method Exceedance
	Frequency	Frequency
Step 1. Load > Annual Load Target?	50%	50%
Step 2. Suspend assessment if Rain is outside the range and Load > Annual Load Target	<20%	2.8%
Step 3. Load > Annual Load Target for 3 consecutive years?	<12.5%	12.1%
Step 4. Load > Annual Load Limit?	<10%	5.7%
Cumulative Exceedance Frequency	<17.5%	16.1%

3547 3548

3549

3550 Site 2: Josephine Creek

- 3551 Annual flow and TP data for discharges from the Josephine Creek Tributary are summarized
- 3552 in Table 3-43. For the development of the performance indicator, a Reference Period of
- **3553** WY1997-2004 was selected for the following reasons:

- 3554 > it represents a period with minimal implementation of source controls. With the
 3555 selection of the Reference Period to precede significant source control
 3556 implementation, no additional calculation is necessary in the performance indicator
 3557 to account for prior source control implementation,
- 3558 it represents a period of relatively constant land use practices,
- 3559 reliable water quality and hydrologic data are available, and
- 3560 > a strong correlation exists between annual TP loads and rainfall, allowing for a
 3561 performance indicator that explicitly incorporates hydrologic variability
- 3562
- 3563 The Reference Period is compared to the historical period of record and WY2001-2010 in

3564 Table 3-44.

- 3565
- 3566
- 3567 3568

Table 3-43. Summary of historical data for JOSEPHIN, the outlet structure for theJosephine Creek Tributary for the WY 1997-2010 period of record.

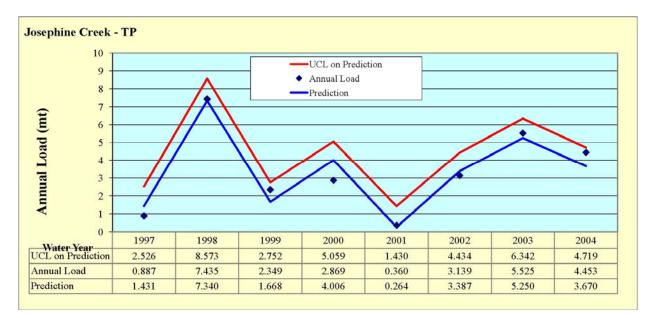
Water	Flow	Load	FWM	Rainfall	Unit Area	Unit Area	Rainfall Characteristics		istics
Year	AF	mt	Conc, µg/L	inches	Runoff, inches	Load, lbs/ac	Kurtosis	Coef. Of Var.	Skewness
1997	18,073	0.887	40	41.67	2.39	0.02	-1.595	0.660	0.030
1998	84,407	7.435	71	77.63	11.18	0.18	0.506	0.376	-0.519
1999	36,978	2.349	51	42.72	4.90	0.06	-0.583	1.009	1.038
2000	40,666	2.869	57	54.65	5.39	0.07	-0.927	0.904	0.722
2001	6,852	0.360	43	36.85	0.91	0.01	-1.084	1.143	0.818
2002	47,295	3.139	54	51.20	6.26	0.08	-1.453	0.771	0.309
2003	79,216	5.525	57	62.30	10.49	0.13	-1.497	0.633	0.322
2004	67,107	4.453	54	52.75	8.89	0.11	-0.215	0.721	0.519
2005	83,943	6.323	61	53.51	11.12	0.15	2.431	0.913	1.474
2006	102,465	5.271	42	45.88	13.57	0.13	0.748	0.854	0.840
2007	21,561	1.374	52	29.68	2.86	0.03	-0.284	0.753	0.869
2008	20,122	1.272	51	42.77	2.66	0.03	-0.360	0.630	0.270
2009	71,127	4.639	53	40.19	9.42	0.11	2.746	1.193	1.692
2010	38,864	2.477	52	49.22	5.15	0.06	-1.349	0.690	0.396
Minimum	6,852	0.360	40	29.68	0.91	0.01	-1.595	0.376	-0.519
Average	51,334	3.455	53	48.64	6.80	0.08	-0.208	0.804	0.627
Maximum	102,465	7.435	71	77.63	13.57	0.18	2.746	1.193	1.692
Std. Dev.	29,906	2.183	8	11.79	3.96	0.05	1.387	0.218	0.570
Median	43,981	3.004	53	47.55	5.82	0.07	-0.472	0.762	0.621
Skewness	0.168	0.307	0.471	0.958	0.168	0.307	1.214	0.136	0.037

³⁵⁶⁹

3570

Table 3-44. Comparison of the Reference Period with the period of record data for Josephine Creek.

	Flow	TP Load	TP Conc	Rainfall	Load			
Metric	AF	mt	μg/L	inches	lbs/ac			
Period of Record - WY1997-2010								
Annual Minimum	6,852	0.360	40	36.85	0.01			
Annual Average	51,334	3.455	55	52.66	0.08			
Annual Median	43,981	3.004	53	53.13	0.07			
Annual Maximum	102,465	7.435	71	77.63	0.18			
	Preliminary Re	eference Perio	od WY1997-	2004				
Annual Minimum	6,852	0.360	40	41.67	0.01			
Annual Average	47,574	3.377	58	53.24	0.08			
Annual Median	43,981	3.004	54	52.58	0.07			
Annual Maximum	84,407	7.435	71	77.63	0.18			
Differe	nce between P	eriod of Reco	ord and Refer	ence Period				
Annual Minimum	0	0.000	0	-4.82	0.000			
Annual Average	3,760	0.078	-3	-0.59	0.002			
Annual Median	0	0.000	-2	0.55	0.000			
Annual Maximum	18,058	0.000	0	0.00	0.000			
Annual Minimum	0%	0%	0%	-12%	0%			
Annual Average	8%	2%	-5%	-1%	2%			
Annual Median	0%	0%	-3%	1%	0%			
Annual Maximum	21%	0%	0%	0%	0%			
		WY2001-20	10					
Annual Minimum	6,852	0.360	42	36.85	0.01			
Annual Average	53,855	3.483	52	52.97	0.08			
Annual Median	57,201	3.796	53	53.13	0.09			
Annual Maximum	102,465	6.323	61	77.63	0.15			
Differ	Difference between WY2001-2010 and Reference Period							
Annual Minimum	0	0.000	2	-4.82	0.00			
Annual Average	6,281	0.106	-5	-0.28	0.00			
Annual Median	13,221	0.792	-2	0.55	0.02			
Annual Maximum	18,058	-1.112	-10	0.00	-0.03			
Annual Minimum	0%	0%	5%	-12%	0%			
Annual Average	13%	3%	-9%	-1%	3%			
Annual Median	30%	26%	-3%	1%	26%			
Annual Maximum	21%	-15%	-14%	0%	-15%			



3576	Based on the fact that the annual median total phosphorus concentration for the period of
3577	record (53 μ g/l) is below the Numeric Nutrient Criteria (120 μ g/l) (Chapter 62-302, F.A.C.),
3578	it is recommended that no reduction goal be applied to tributary. An Annual Load Target
3579	and an Annual Load Limit for the Josephine Creek Tributary will be calculated according to
3580	the following equations and explanation:
3581	
3582	Target = $-33.98677 + 9.49604$ X
3583	Explained Variance = 92.7 percent, Standard Error of Regression Equation = 0.686
3584	Predictor X is calculated from the first moment (m_1) of the 12 monthly rainfall totals
3585	$(r_i, i=1 \text{ to } 12, \text{ inches})$ for the Evaluation Year:
3586	$m_1 = Sum [r_i] / 12$
3587	$X = \ln (12 m_1)$
3588 3589	Limit = Target + 1.43976 SE
3590	SE = standard error of the Target for May-April interval
3591	$SE = 0.68581 [1 + 1/8 + (X-X_m)^2 / 0.40023]^{0.5}$
3592	
3593	Where:
3594	X = the natural logarithm of the 12-month total rainfall (ln(inches))
3595	X_{m} = average value of the predictor in Reference Period = 3.93468
3596	
3597 3598	The predictor X indicates that load increases with total annual rainfall.
3599	A comparison of the observed loads and the resulting Targets and Limits for the Reference
3600	Period are presented in Figure 3-34. Annual TP loads at the tributary outlet monitoring
3601	location, will be evaluated against the performance measure described above.
3602	

Figure 3-34. Comparison of observed annual loads with the Annual Load Targets and Limits for the Josephine Creek Tributary.

3606 3607

Suspension of Performance Determination. The performance determination will be suspended due to rainfall conditions if the observed annual TP load from the basin, adjusted for regional projects (if present), exceeds the Annual Load Target and the rainfall falls outside the range of rainfall values for the Reference Period (36.85 – 77.63 inches). The calculated Annual Load Targets and Annual Load Limits for the rainfall conditions observed during the period of record are summarized in **Table 3-45**.

3614

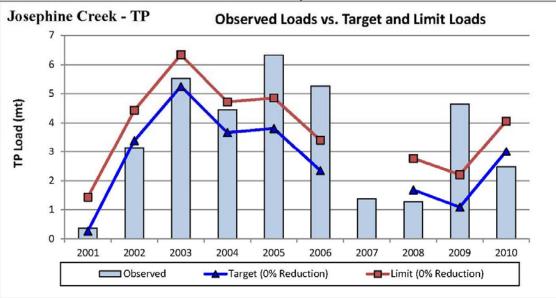
3615 The annual performance determination process will account for regional projects, as 3616 applicable, and is presented in the flowchart in **Figure 1-2**.

3617

3618 Comparison to WY2001-2010. A comparison of the WY2001-2010 observed loads to the3619 Annual Load Targets and Limits is presented in Figure 3-35.

3621	Table 3-45. Annu	e 3-45. Annual adjusted rainfall for the historical period of record for the						
3622	Josephine	Josephine Creek Tributary (Reference Period: WY1997-2004).						
	Mater	Observed	In (Dela)	Townsh	65	1 Incold	1	

Josephine Creek Tributary (Reference refibu. W 11))7-2004).							
Water	Observed	In(Rain)	Target	Target SE			
Year	Load, mt	In(inches)	Load, mt	Load, mt	Load, mt		
1997	0.887	3.72978	1.431	0.761	2.526		
1998	7.435	4.35195	7.340	0.857	8.573		
1999	2.349	3.75467	1.668	0.753	2.752		
2000	2.869	4.00095	4.006	0.731	5.059		
2001	0.360	3.60686	0.264	0.810	1.430		
2002	3.139	3.93574	3.387	0.727	4.434		
2003	5.525	4.13196	5.250	0.758	6.342		
2004	4.453	3.96556	3.670	0.728	4.719		
2005	6.323	3.97987	3.806	0.729	4.856		
2006	5.271	3.82603	2.345	0.737	3.406		
2007	1.374	3.39047	-1.791	0.937	-0.442		
2008	1.272	3.75584	1.679	0.753	2.763		
2009	4.639	3.69362	1.088	0.773	2.201		
2010	2.477	3.89630	3.013	0.729	4.062		


3623

3624 Note: Shaded water years indicate the performance determination would have been suspended due to anomalous rainfall coupled with the observed load being greater than the Load Target.

3626

3627 3628 3629

Figure 3-35. Comparison of WY2001-2010 loads with Reference Period loads and Annual Load Targets, adjusted for hydrologic variability, for the Josephine Creek Tributary.

Note: The Reference Period extended from WY1997-2004. The performance determination for WY2007 would have been suspended due to rainfall below the minimum value during the Reference Period coupled with the observed load being greater than the Load Target.

3634 Exceedance Frequency Analysis. Using the approach described in Section 2.6, an 3635 approximation of the cumulative exceedance frequency for the determination methodology 3636 was estimated using a Monte Carlo approach based on the annual rainfall and the annual TP 3637 loads of the Base Period (Table 3-46). Because the TP loads and rainfall statistics from the 3638 Base Period do not perfectly describe normal distributions (e.g., the medians are generally 3639 less than the means), the methodology includes conditional probabilities, and because the 3640 random number generator is imperfect, the exceedance frequencies deviate from the 3641 theoretical values shown in the second column. However, the results are determined to be reasonable and defensible since the cumulative exceedance frequency is less than the 3642 3643 theoretical value of approximately 17.5 percent.

3644

3645 Table 3-46. Exceedance frequencies for the proposed determination methodology for
 3646 the Josephine Creek basin.
 3647

Component of Performance Assessment	Theoretical Exceedance	Method Exceedance
	Frequency	Frequency
Step 1. Load > Annual Load Target?	50%	50%
Step 2. Suspend assessment if Rain is outside the range and Load > Annual Load Target	<20%	6.0%
Step 3. Load > Annual Load Target for 3 consecutive years?	<12.5%	10.9%
Step 4. Load > Annual Load Limit?	<10%	4.0%
Cumulative Exceedance Frequency	<17.5%	13.8%
Cumulative Exceedance Frequency	<17.5%	13.8%

3.7 West Lake Okeechobee Sub-watershed

3659 The West Lake Okeechobee Sub-watershed is composed of 246,240 acres located along the 3660 west shore of Lake Okeechobee, south of Fisheating Creek and northeast of the South Lake 3661 Okeechobee Sub-watershed (Figure 3-36). The sub-watershed consists of two smaller 3662 hydrologic units, East Caloosahatchee and S-4/Industrial Canal. These two hydrologic units 3663 are referred to as summary basins in reference to the Lake Okeechobee Watershed, while 3664 they are referred to as sub-watersheds in the Caloosahatchee River Watershed. For the purposes of this report, both areas will simply be referred to as hydrologic units or basins. 3665 3666 Flow and TP monitoring sites are identified in Tables C-1 and C-2.

3667

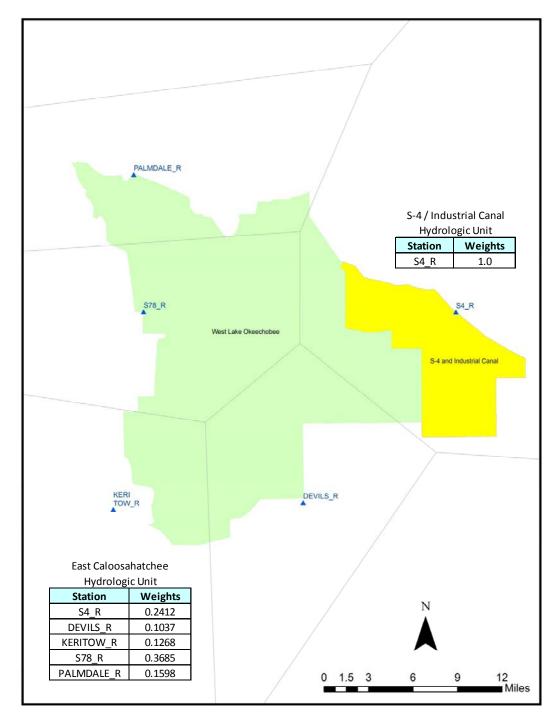
3668 District staff identified five rainfall stations considered to be representative of the West Lake 3669 Okeechobee Sub-watershed. Monthly rainfall data and weighting factors for the rainfall 3670 stations for each basin were developed and provided by the District. All selected rainfall 3671 stations had periods of record that began no later than May 1976. The Thiessen Polygons 3672 and associated weighting factors used to calculate basin rainfall values are shown in **Figure** 3673 **3-37**.

3674

3675 The following sections describe the derivation of the performance measure methodologies 3676 for TP for the basins within the West Lake Okeechobee Sub-watershed. Performance 3677 measure(s) for nitrogen species will be addressed in a future document for the 3678 Caloosahatchee River Watershed.

- 3679
- 3680
- 3681
- 3682
- 3683
- 3684

Figure 3-36. West Lake Okeechobee Sub-watershed boundary and discharge monitoring locations.


3687

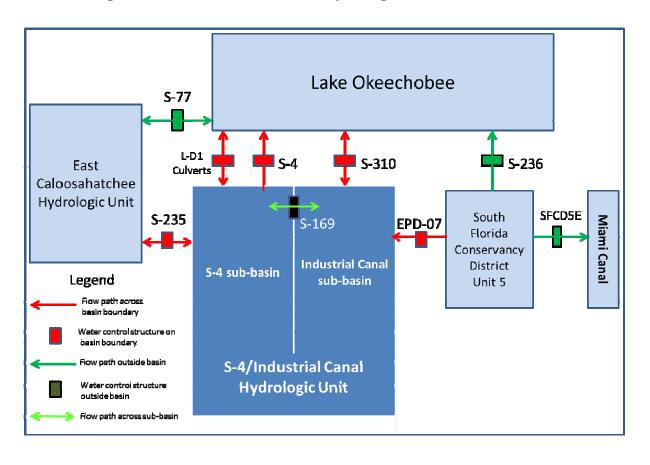
Gary Goforth, Inc. February 2013

3688Figure 3-37. Schematic of West Lake Okeechobee Sub-watershed, hydrologic units and
selected rainfall stations.

3691 3692

3.7.1 S-4/Industrial Canal Hydrologic Unit

3693 The S-4/Industrial Canal Hydrologic Unit is composed of 42,145 acres located along the west 3694 shore of Lake Okeechobee between the East Caloosahatchee Hydrologic Unit and the South 3695 Lake Okeechobee Sub-watershed. The S-4/Industrial Canal Hydrologic Unit contains two 3696 interconnected sub-basins: S-4 and Industrial Canal. The S-4/Industrial Canal Hydrologic 3697 Unit is also referred to as the S-4 Sub-watershed, e.g., in the Caloosahatchee River 3698 Watershed. S-169 is a culvert structure that discharges in both directions between the 3699 Industrial Canal Sub-basin and the S-4 Sub-basin. The S-4/Industrial Canal Hydrologic Unit 3700 has four primary structures on its borders with Lake Okeechobee, the East Caloosahatchee 3701 Hydrologic Unit, and the South Florida Conservancy District (SFCD) Unit 5 which is within 3702 the South Lake Okeechobee Sub-watershed (east of structure EPD-07) (Figure 3-38):


- S-235 is a culvert that discharges in both directions between S-4/Industrial Canal
 Hydrologic Unit and the East Caloosahatchee Hydrologic Unit;
- S-4 is a pump station that discharges from the S-4/Industrial Canal Hydrologic Unit
 to Lake Okeechobee;
- S-310 is a boat lock that passes water in both directions between the S-4/Industrial
 Canal Hydrologic Unit and Lake Okeechobee when lake stages are below 15.5 feet,
 NGVD (the gate is closed when the lake stage is above 15.5 ft NGVD, from SFWMD
 Structure Books); and
- EPD-07 is a pump station that discharges excess water from the SFCD Unit 5 in the
 South Lake Okeechobee Sub-watershed to Industrial Canal. In August 2005, new
 facilities became operational that enabled the diversion of a long-term average annual
 80 percent of the SFCD Unit 5 drainage away from Lake Okeechobee as required by
 the Everglades Forever Act (Burns & McDonnell, 2008).

Other structures that discharge to and from the S-4/Industrial Canal Hydrologic Unit are the
LD-1 culverts (C-1, C-1A, and C-2 – discharge to/from Lake Okeechobee) and the Disston
Island Conservancy District Pump Station No. 3 (DICD#3 - discharges to/from the East
Caloosahatchee Hydrologic Unit). No discharge records are available for these structures
and it is assumed that the nutrient loads discharged from these structures are not significant.
Hence, these structures are not addressed in this performance measure.

3722 3723 Figure 3-38. S-4/Industrial Canal Hydrologic Unit Flow Schematic.

3729 3.7.1.1 Background

The performance measure methodology is based on flows and TP loads resulting from rainfall and runoff from the S-4/Industrial Canal Hydrologic Unit. Basin flows and loads, adjusted for pass-through flows and loads discharged from external sources, were calculated using algorithms provided in Appendix A. Annual basin flow and TP data for discharges from the S-4/Industrial Canal Hydrologic Unit for the WY1993-2010 period of record are summarized in **Table 3-47**.

3737

3730

3738

3739

			FWM		Unit Area	Unit Area	Ra	Rainfall Characteristics	
Water	Flow	TP Load	TP Conc	Rainfall	Runoff	Load	Kurtosis	Coef. Of Var.	Skewness
Year	AF	mt	μg/L	inches	in/yr	lbs/ac	К	CV	S
1992				38.80			-0.934	0.534	0.308
1993	106,756	17.622	134	46.54	30.40	0.92	5.558	1.235	2.175
1994	71,896	7.485	84	33.83	20.47	0.39	-0.994	0.576	0.302
1995	101,775	23.532	187	58.12	28.98	1.23	1.402	0.620	1.328
1996	129,326	23.440	147	53.38	36.82	1.23	-0.552	0.864	0.763
1997	88,818	10.278	94	38.13	25.29	0.54	-0.733	0.801	0.566
1998	114,857	16.179	114	54.22	32.70	0.85	1.039	0.763	1.007
1999	78,842	20.649	212	34.48	22.45	1.08	1.398	1.225	1.449
2000	131,064	28.655	177	58.34	37.32	1.50	3.871	1.133	1.733
2001	36,636	6.888	152	34.30	10.43	0.36	-0.615	1.006	0.803
2002	47,396	11.258	193	43.78	13.50	0.59	-1.095	0.783	0.660
2003	94,857	20.933	179	42.96	27.01	1.10	1.878	0.923	1.586
2004	88,864	15.699	143	36.98	25.30	0.82	-0.432	0.696	0.239
2005	110,534	22.510	165	40.47	31.47	1.18	0.269	0.927	1.109
2006	113,392	30.280	216	48.63	32.29	1.58	-0.372	0.930	0.786
2007	25,621	6.906	219	24.83	7.30	0.36	-0.052	1.079	1.130
2008	15,712	4.519	233	36.52	4.47	0.24	-1.578	0.683	0.255
2009	48,116	16.153	272	30.54	13.70	0.84	0.181	1.128	1.064
2010	109,247	21.455	159	56.29	31.11	1.12	-1.709	0.679	-0.137
Minimum	15,712	4.519	84	24.83	4.47	0.24	-1.709	0.576	-0.137
Average	84,095	16.913	163	42.91	23.94	0.88	0.415	0.892	0.934
Maximum	131,064	30.280	272	58.34	37.32	1.58	5.558	1.235	2.175
Std. Dev.	35,596	7.697	49	10.13	10.14	0.40	1.887	0.208	0.588
Skewness	-0.618	-0.039	0.082	0.130	-0.618	-0.04	1.518	0.229	0.226
Median	91,861	16.901	171	41.72	26.16	0.88	-0.212	0.894	0.905

Table 3-47. Summary of historical data for the S-4/Industrial Canal Hydrologic Unit.

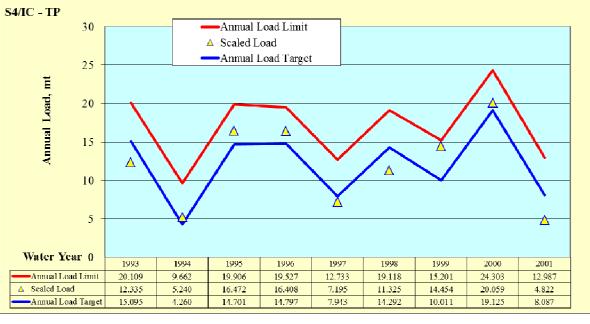
- 3741
- 3742 For the development of the performance measure methodology, a Base Period of WY1993-
- **3743** 2001 was selected for the following reasons.

- 3744 > It represents a period with minimal implementation of source controls. With the
 3745 selection of the Base Period to precede significant source control implementation,
 3746 no additional calculation is necessary in the performance measure methodology to
 account for prior source control implementation.
- Beginning in WY2006, discharges into the basin from the adjacent Ch. 298
 District have decreased by more than 80 percent, a result of the mandated
 diversion project. However, there has been no noticeable effect on the basin
 flows and TP loads, likely due to the pass-through algorithm used to account for
 these external inflows.
- 3753 Fit represents a period of relatively constant land use practices.
- 3754 > It contained a reasonably wide range of hydrologic conditions.
- 3755 > Reliable water quality and flow data are available
- 3756 > A strong correlation exists between annual TP loads and rainfall, allowing for a
 3757 performance measure methodology that explicitly incorporates hydrologic
 3758 variability.
- 3759 The Base Period is compared to the historical period of record and WY2001-2010 in Table3760 3-48.
- 3761
- 3762
- 3763
- 3764
-
- 3765
- 3766
- 3767

Table 3-48. Comparison of Base Period with period of record and WY2001-2010 data for the S-4/Industrial Canal Hydrologic Unit.

	Flow	TP Load	TP Conc	Rainfall	Unit Area
Metric	AF	mt	μg/L	inches	Load, lbs/ac
	Period	of Record - V	VY1993-2010)	
Annual Minimum	15,712	4.519	84	24.83	0.24
Annual Average	84,095	16.913	163	42.91	0.88
Annual Median	91,861	16.901	171	41.72	0.88
Annual Maximum	131,064	30.280	272	58.34	1.58
	Bas	se Period WY	1993-2001		
Annual Minimum	36,636	6.888	84	33.83	0.36
Annual Average	95,552	17.192	146	45.70	0.90
Annual Median	101,775	17.622	147	46.54	0.92
Annual Maximum	131,064	28.655	212	58.34	1.50
Di	fference betwe	een Period of	Record and Ba	ase Period	
Annual Minimum	-20,924	-2.369	0	-9.00	-0.12
Annual Average	-11,457	-0.279	17	-2.80	-0.01
Annual Median	-9,915	-0.721	24	-4.83	-0.04
Annual Maximum	0	1.625	60	0.00	0.09
Annual Minimum	-57%	-34%	0%	-27%	-34%
Annual Average	-12%	-2%	12%	-6%	-2%
Annual Median	-10%	-4%	16%	-10%	-4%
Annual Maximum	0%	6%	28%	0%	6%
	-	WY2001-2			
Annual Minimum	15,712	4.519	143	24.83	0.24
Annual Average	69,038	15.660	184	39.53	0.82
Annual Median	68,490	15.926	186	38.73	0.83
Annual Maximum	113,392	30.280	272	56.29	1.58
	ifference betw	veen WY2001	-2010 and Bas	se Period	
Annual Minimum	-20,924	-2.369	59	-9.00	-0.12
Annual Average	-26,515	-1.532	38	-6.17	-0.08
Annual Median	-33,285	-1.696	39	-7.82	-0.09
Annual Maximum	-17,672	1.625	60	-2.05	0.09
Annual Minimum	-57%	-34%	70%	-27%	-34%
Annual Average	-28%	-9%	26%	-14%	-9%
Annual Median	-33%	-10%	27%	-17%	-10%
Annual Maximum	-13%	6%	28%	-4%	6%

3775	3.7.1.2 Performance Measure Methodology
3776 3777	Based on the evaluation of individual land use source control effectiveness ranges described
3778	in Section 2.6, the overall range of TP load reduction that could be accomplished through
3779	collective source controls within the basin was estimated, and a load reduction target of 30
3780	percent was determined to be reasonable and appropriate. Details are provided in Appendix
3781	D and in Attachment 1.
3782	
3783	An Annual Load Target and an Annual Load Limit were derived from the Base Period data
3784	using a 30 percent load reduction. The Annual Load Target and Annual Load Limit will be
3785	calculated according to the following equations and explanation:
3786	
3787	Target = -14.62787 + 0.41452 X + 8.44621 C
3788	Explained Variance = 76.2% , Standard Error of Regression = 3.026 mt
3789	
3790	Predictors (X and C) are calculated from the first two moments (m_1, m_2) of
3791	the 12 monthly rainfall totals (r_i , i=1 to 12, inches) for the Evaluation Year:
3792	$m_1 = Sum [r_i] / 12$
3793	$m_2 = Sum [r_i - m_1]^2 / 12$
3794	$X = 12 m_1$
3795	$C = [(12/11) m_2]^{0.5}/m_1$
3796	Limit = Target + 1.43976 SE
3797	SE = standard error of the Target for May-April interval
3798	SE = $3.02608 [1 + 1/9 + 0.00112 (X-X_m)^2 + 2.03794 (C-C_m)^2 +$
3799	$0.00884 (X-X_m) (C-C_m)]^{0.5}$
3800	Where:
3801	X = the 12-month total rainfall (inches)



- C = coefficient of variation calculated from 12 monthly rainfall totals
- 3803 X_m = average value of the predictor in base period = 45.704 inches
- 3804 C_m = average value of the predictor in base period = 0.91367
- 3805

3806 The first predictor (X) indicates that load increases with total annual rainfall. The second 3807 predictor (C) indicates that the load resulting from a given annual rainfall is higher when 3808 the distribution of monthly rainfall has higher variability. For a given annual rainfall, the 3809 lowest load occurs when rainfall is evenly distributed across months and the highest load 3810 occurs when all of the rain falls in one month. Real cases are likely to fall in between.

- 3811
 3812 A comparison of the scaled loads and the resulting Targets and Limits for the Base Period
 3813 are presented in Figure 3-39. Annual TP loads at the sub-watershed outlet structures,
 3814 adjusted to account for regional projects (as applicable) and pass-through loads as described
 3815 in Appendix A, will be evaluated against the performance measure described above.
- 3816

Figure 3-39. Comparison of scaled annual loads with the Annual Load Targets and
 Limits for the S-4/Industrial Canal Hydrologic Unit.

3820	Suspension of Performance Determination. The performance determination will be
3821	suspended due to rainfall conditions if the observed annual TP load, adjusted for regional
3822	projects (if present), from the basin exceeds the Annual Load Target and the adjusted rainfall
3823	falls outside the range of adjusted rainfall values for the Base Period (26.95 - 62.81 inches),
3824	as derived below. Rainfall conditions will be assessed by calculating an adjusted rainfall
3825	amount which reflects the cumulative effect of the predictor variables of the Annual Load
3826	Target equation. The adjusted rainfall is the rainfall that would produce the equivalent
3827	annual load using the Annual Load Target equation by setting the value of C to its mean
3828	value for the calibration period.
3829	
3830	Adjusted Rain = $X + 20.37588 (C - 0.91367)$
3831	
3832	The calculated adjusted rainfall values, Annual Load Targets and Annual Load Limits for the
3833	WY1993-2010 period of record are summarized in Table 3-49.
3834	
3835	The annual performance determination process will account for pass-through loads and
3836	regional projects, as applicable, and is presented in the flowchart in Figure 1-2.
3837	Comparison to WW2001 2010 A comparison of the WW2001 2010 showed had to the
3838	Comparison to WY2001-2010. A comparison of the WY2001-2010 observed loads to the
3839	Annual Load Targets and Limits is presented in Figure 3-40 .
3840 3841	
3842	
3843	
3844	
3845	
3846	
3847	
5047	

Table 3-49. Annual adjusted rainfall for the historical period of record for the S 4/Industrial Canal Hydrologic Unit (Base Period: WY1993-2001).


4/Industrial Canal Hydrologic Unit (Base Period: WY 1993-2001).									
Water	Observed	Rain	CV	Target	Limit	Adjusted			
Year	Load, mt	in		Load, mt	Load, mt	Rain, in			
1993	17.622	46.54	1.235	15.095	20.110	53.09			
1994	7.485	33.83	0.576	4.260	9.661	26.95			
1995	23.532	58.12	0.620	14.701	19.906	52.14			
1996	23.440	53.38	0.864	14.797	19.527	52.37			
1997	10.278	38.13	0.801	7.943	12.733	35.83			
1998	16.179	54.22	0.763	14.292	19.119	51.15			
1999	20.649	34.48	1.225	10.011	15.201	40.82			
2000	28.655	58.34	1.133	19.125	24.303	62.81			
2001	6.888	34.30	1.006	8.087	12.987	36.18			
2002	11.258	43.78	0.783	10.133	14.810	41.12			
2003	20.933	42.96	0.923	10.976	15.586	43.15			
2004	15.699	36.98	0.696	6.580	11.566	32.54			
2005	22.510	40.47	0.927	9.977	14.632	40.74			
2006	30.280	48.63	0.930	13.385	17.999	48.96			
2007	6.906	24.83	1.079	4.778	10.331	28.20			
2008	4.519	36.52	0.683	6.279	11.309	31.82			
2009	16.153	30.54	1.128	7.559	12.776	34.91			
2010	21.455	56.29	0.679	14.440	19.459	51.51			

3851 3852 3853 3854

3855

3850

Figure 3-40. Comparison of WY2001-2010 loads with Base Period loads and Annual Load Targets, adjusted for hydrologic variability, for the S-4/Industrial Canal Hydrologic Unit.

3858 **Exceedance Frequency Analysis.** As shown in Figure 3-39, although the scaled observed 3859 loads fall above the Annual Load Target roughly half the time (five out of nine years, or 55 3860 percent), three of these exceedances occur in successive years. In accordance with the 3861 proposed performance determination process discussed in Section 2.6, three successive years 3862 when the observed load exceeds the Annual Load Target would prevent the basin from 3863 meeting its performance measure. In the case of the scaled Base Period data, this is an example of a Type I error²⁰, or "false positive" - when the performance method suggests a 3864 lack of compliance when the basin's load actually achieves the long-term reduction goals. 3865 3866 The use of a three-year cycle for the Annual Load Target is consistent with the District's 3867 Chapter 40E-63 F.A.C., and has a theoretical Type I error (i.e., false positive) rate of 12.5 percent. Using the approach described in Section 2.6, an approximation of the cumulative 3868 3869 exceedance frequency for the determination methodology was estimated using a Monte Carlo 3870 approach based on the annual rainfall and the annual TP loads of the Base Period (Table 3-3871 **50**). Because the TP loads and rainfall statistics from the Base Period do not perfectly describe normal distributions (e.g., the medians are generally less than the means), the 3872 3873 methodology includes conditional probabilities, and because the random number generator is 3874 imperfect, the exceedance frequencies deviate from the theoretical values shown in the 3875 second column. However, the results are determined to be reasonable and defensible since 3876 the cumulative exceedance frequency is less than the theoretical value of approximately 17.5 3877 percent.

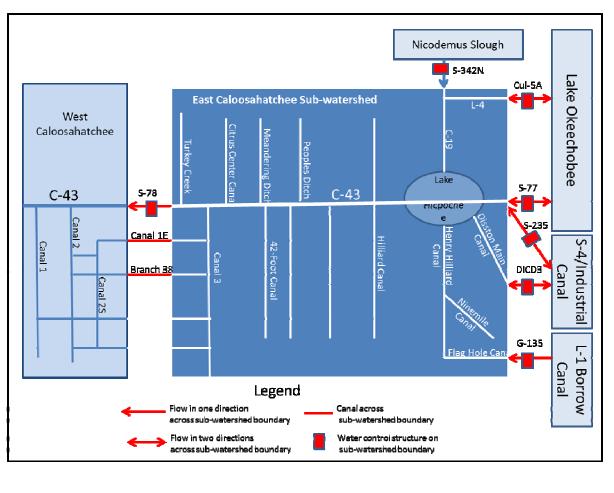
 $^{^{20}}$ The Type I error rate is the probability that the performance measure methodology will reject the null hypothesis (i.e., a determination that the TP load does not meet the performance measure) when in reality the null hypothesis is true – the annual load meets the performance measure, and is therefore also known as the false positive rate.

3884Table 3-50. Exceedance frequencies for the proposed determination methodology for3885the S-4/Industrial Canal Hydrologic Unit.3886

Component of Performance Assessment	Theoretical Exceedance Frequency	Method Exceedance Frequency
Step 1. Load > Annual Load Target?	50%	50%
Step 2. Suspend assessment if Rain _{adj} is outside the range and Load > Annual Load Target	<20%	5.2%
Step 3. Load > Annual Load Target for 3 consecutive years?	<12.5%	11.2%
Step 4. Load > Annual Load Limit?	<10%	3.0%
Cumulative Exceedance Frequency	<17.5%	13.4%

3913	3.7.2 East Caloosahatchee Hydrologic Unit
3914 3915	The East Caloosahatchee Hydrologic Unit consists of 204,094 acres located adjacent to the
3916	west shoreline of Lake Okeechobee. It includes the area that drains to C-43 Canal between
3917	S-77 and S-78. Flows are discharged to and from Lake Okeechobee at S-77. Flows are also
3918	discharged to and from the S-4/Industrial Canal Hydrologic Unit at S-235. The East
3919	Caloosahatchee Hydrologic Unit is also referred to as the East Caloosahatchee Sub-
3920	watershed of the Caloosahatchee River Watershed ²¹ . The historical data analysis for the East
3921	Caloosahatchee Hydrologic Unit was prepared under a separate contract by HDR
3922	Engineering, Inc. (2011b) and is summarized herein.
3923	
3924	There are five additional locations where flows cross the boundaries of the East
3925	Caloosahatchee Hydrologic Unit (Figure 3-417), as described below:
3926	• Disston Island Conservancy District Pump No. 3 (DICD3) discharges in both
3927	directions to and from the S-4/Industrial Canal Hydrologic Unit,
3928	• S-342N discharges from Nicodemus Slough,
3929	• G-135 discharges from the L-1 Borrow Canal (Flaghole Drainage District) to C-43,
3930	and
3931	• Canals 1, 2, and 3, with other tertiary canals, provide a connection with the West
3932	Caloosahatchee Sub-watershed (the area that drains to C-43 between S-78 and S-79).
3933	• Culvert 5A discharges both directions to and from Lake Okeechobee.
3934	
3935	The discharges at these locations are small and there are little or no flow or water quality data
3936	(HDR 2011b for DICD3, S-342N G-135, and Canals 1, 2, and 3. Culvert 5A data was
3937	evaluated by District staff and was assumed that the nutrient loads discharge from this

¹ Performance measure(s) for nitrogen species will be addressed in a future document for the Caloosahatchee River Watershed



structure was not significant). Hence, these flows and loads were not considered in thisperformance measure methodology.

- 3940
- 3941

Figure 3-41. Flow diagram for East Caloosahatchee basin.

3942 3943 3944

3945 3.7.2.1 Background

3946

The performance measure methodology is based on flows and TP loads resulting from
rainfall and runoff from the East Caloosahatchee Hydrologic Unit. Basin flows and loads,
adjusted for pass through flows and loads discharged from external sources, were calculated

3950 using algorithms provided in Appendix A. Annual flow and TP data for discharges from the

- East Caloosahatchee Hydrologic Units are summarized in Table 3-51.
- 3952

3953 Table 3-51. Summary of historical data for the East Caloosahatchee Hydrologic Unit.3954

			FWM		Unit Area	Unit Area	Rainfall Characteristics		istics
Water	Flow	TP Load	TP Conc	Rainfall	Runoff	Load	Kurtosis	Coef. Of Var.	Skewness
Year	AF	mt	μg/L	inches	in/yr	lbs/ac	К	CV	S
1981				32.31			2.043	0.887	1.348
1982	89,153	23.523	214	42.29	5.24	0.25	3.411	0.840	1.538
1983	588,703	191.161	263	72.47	34.61	2.06	0.128	0.664	0.382
1984	211,215	23.371	90	52.22	12.42	0.25	1.338	0.620	0.673
1985	267,350	110.460	335	47.99	15.72	1.19	-0.694	0.890	0.584
1986	199,891	54.939	223	46.57	11.75	0.59	-1.014	0.724	0.556
1987	343,358	77.368	183	56.21	20.19	0.84	-0.388	0.772	0.687
1988	254,651	61.198	195	48.58	14.97	0.66	1.105	0.617	0.830
1989	145,877	28.798	160	46.03	8.58	0.31	1.480	0.912	1.319
1990	112,163	23.185	168	43.81	6.59	0.25	-1.113	0.787	0.650
1991	156,204	35.224	183	52.85	9.18	0.38	-0.175	0.791	0.718
1992	238,943	63.448	215	59.68	14.05	0.69	0.294	0.714	0.859
1993	275,410	68.616	202	52.67	16.19	0.74	3.817	1.009	1.823
1994	205,552	37.434	148	47.73	12.09	0.40	-1.252	0.520	0.013
1995	295,839	61.030	167	57.57	17.39	0.66	0.018	0.449	0.924
1996	317,530	64.927	166	57.42	18.67	0.70	-1.614	0.839	0.367
1997	139,355	21.435	125	47.75	8.19	0.23	-0.276	0.814	0.587
1998	237,053	57.387	196	62.17	13.94	0.62	-0.421	0.578	-0.031
1999	287,114	52.252	148	42.46	16.88	0.56	-0.573	0.823	0.686
2000	364,314	53.363	119	60.47	21.42	0.58	2.354	1.078	1.506
2001	120,427	-3.251	-22	34.44	7.08	-0.04	-0.851	0.915	0.590
2002	226,842	71.866	257	54.89	13.34	0.78	-1.389	0.893	0.602
2003	462,008	101.832	179	61.45	27.16	1.10	2.209	0.805	1.395
2004	349,932	92.878	215	54.29	20.57	1.00	-1.524	0.748	0.251
2005	300,291	7.725	21	52.49	17.66	0.08	1.054	0.893	1.137
2006	575,220	93.518	132	57.97	33.82	1.01	0.026	0.947	0.881
2007	243,725	54.034	180	37.94	14.33	0.58	0.720	1.151	1.225
2008	108,808	18.112	135	51.49	6.40	0.20	2.054	0.766	1.267
2009	248,322	89.044	291	46.30	14.60	0.96	1.268	1.253	1.399
2010	334,902	66.063	160	63.32	19.69	0.71	-1.279	0.667	0.009
Minimum	89,153	7.725	21	37.94	5.24	0.08	-1.614	0.449	-0.031
Average	270,704	60.864	182	52.75	15.92	0.66	0.342	0.806	0.816
Maximum	588,703	191.161	335	72.47	34.61	2.06	3.817	1.253	1.823
Std. Dev.	122,851	37.213	62	7.69	7.22	0.40	1.487	0.181	0.489
Skewness	1.045	1.538	0.097	0.360	1.045	1.54	0.710	0.432	0.129
Median	251,487	59.209	180	52.58	14.79	0.64	0.022	0.798	0.703

Note: The FWM TP concentration is calculated by dividing the annual TP load by the annual flow. In WY2001 the observed load was negative due to more TP load entering the basin than leaving the basin, thus resulting in a negative TP concentration. Since the negative TP concentration is not physically possible, WY2001 data were excluded from the summary statistics.

3962	For the	e development of the performance measure methodology, a Base Period of WY1982-
3963	1990 v	vas selected for the following reasons.
3964	\triangleright	it represents a period with minimal prior implementation of source controls. With the
3965		selection of the Base Period to precede significant source control implementation, no
3966		additional calculation is necessary in the performance measure methodology to
3967		account for prior source control implementation,
3968	\succ	it represents a period of relatively uniform water management,
3969	\succ	it traversed several hydrologic conditions (wet and dry years),
3970	\succ	reliable water quality and hydrologic data are available, and
3971	\succ	a strong correlation exists between annual TP loads and rainfall, allowing for a
3972		performance measure methodology that explicitly incorporates hydrologic variability.
3973		
3974	The B	ase Period is compared to the historical period of record and WY2001-2010 in Table
3975	3-52.	
3976		
3977 3978		
3979		
3980		
3981 3982		
3983		
3984		
3985		
3986 3987		
3988		
3989		
3990		
3991 3992		
3992		
3994		

Table 3-52. Comparison of Base Period with period of record and WY2001-2010 data for the East Caloosahatchee Hydrologic Unit.

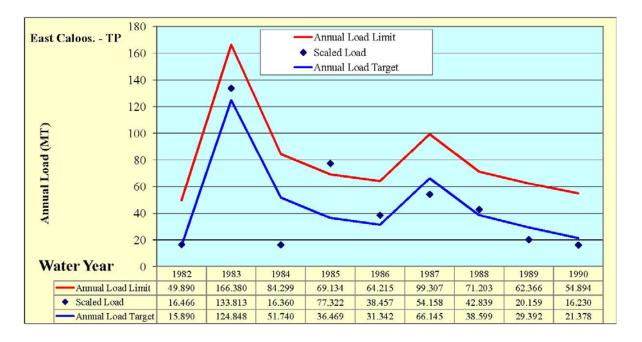
Matria	Flow	TP Load	TP Conc	Rainfall	Unit Area			
Metric	AF	mt	μg/L	inches	Load, lbs/ac			
	Period	of Record - V	WY1982-2010)				
Annual Minimum	89,153	7.725	21	37.94	0.08			
Annual Average	270,704	60.864	182	52.75	0.66			
Annual Median	251,487	59.209	180	52.58	0.64			
Annual Maximum	588,703	191.161	335	72.47	2.06			
	Base Period WY1982-1990							
Annual Minimum	89,153	23.185	90	42.29	0.25			
Annual Average	245,818	66.000	218	50.69	0.71			
Annual Median	211,215	54.939	195	47.99	0.59			
Annual Maximum	588,703	191.161	335	72.47	2.06			
D	ifference betw	een Period of	Record and B	ase Period				
Annual Minimum	0	-15.460	-69	-4.35	-0.17			
Annual Average	24,887	-5.136	-35	2.07	-0.06			
Annual Median	40,272	4.270	-16	4.59	0.05			
Annual Maximum	0	0.000	0	0.00	0.00			
Annual Minimum	0%	-67%	-77%	-10%	-67%			
Annual Average	10%	-8%	-16%	4%	-8%			
Annual Median	19%	8%	-8%	10%	8%			
Annual Maximum	0%	0%	0%	0%	0%			
		WY2002-	2010					
Annual Minimum	108,808	7.725	21	37.94	0.08			
Annual Average	316,672	66.119	169	53.35	0.71			
Annual Median	300,291	71.866	179	54.29	0.78			
Annual Maximum	575,220	101.832	291	63.32	1.10			
E	Difference betw	veen WY2002	-2010 and Ba	se Period				
Annual Minimum	19,655	-15.460	-69	-4.35	-0.17			
Annual Average	70,854	0.119	-48	2.66	0.00			
Annual Median	89,076	16.927	-16	6.30	0.18			
Annual Maximum	-13,483	-89.329	-44	-9.15	-0.96			
Annual Minimum	22%	-67%	-77%	-10%	-67%			
Annual Average	29%	0%	-22%	5%	0%			
Annual Median	42%	31%	-8%	13%	31%			
Annual Maximum	-2%	-47%	-13%	-13%	-47%			

3998 3999 4000 4001

Load.

Note: WY2001 was excluded due to negative TP Load, TP Concentration, and Unit Area

4002	3.7.2.2 Performance Measure Methodology
4003 4004	Based on the evaluation of individual land use source control effectiveness ranges described
4005	in Section 2.6, the overall range of TP load reduction that could be accomplished through
4006	collective source controls within the basin was estimated, and a load reduction target of 30
4007	percent was determined to be reasonable and appropriate. Details are provided in Appendix
4008	D and in Attachment 1.
4009	
4010	An Annual Load Target and an Annual Load Limit were derived from the Base Period data
4011	using a 30 percent load reduction. The Annual Load Target and Annual Load Limit will be
4012	calculated according to the following equations and explanation:
4013	
4014	Target = -136.788 + 3.61027 Rain
4015	Explained Variance = 72.6%, Standard Error of Regression = 21.79613 mtons
4016	
4017	Predictor X is calculated from the first moment (m_1) of the 12 monthly rainfall totals $(r_i, i=1)$
4018	to 12, inches) for the Evaluation Year:
4019	$m_1 = Sum [r_1] / 12$
4020	$X = 12 m_1$
4021	Limit = Target + 1.41492 SE
4022	SE = standard error of the Target for May-April interval
4023	SE = 21.79613 [$1 + 1/9 + (X-X_m)^2 / 675.50602$] ^{0.5}
4024	Where:
4025	X = the 12-month total rainfall (inches)
4026	X_m = average value of the predictor in base period = 50.686 inches
4027	
4028	The predictor X indicates that load increases with total annual rainfall.
4029	



A comparison of the scaled loads and the resulting Targets and Limits for the Base Period are
presented in Figure 3-42. Annual TP loads at the hydrologic unit outlet structures, adjusted
to account for regional projects (as applicable) and pass-through loads as described in
Appendix A, will be evaluated against the performance measure described above.

- 4034
- 4035 4036

4036 4037

Figure 3-42. Comparison of scaled annual loads with the Annual Load Targets and Limits for the East Caloosahatchee Hydrologic Unit.

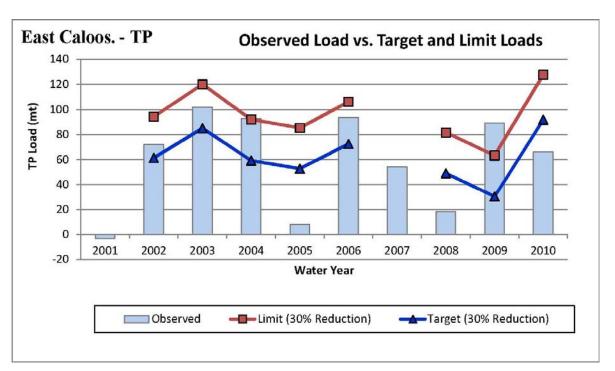
⁴⁰³⁸

4039

4040 Suspension of Performance Determination. The performance determination will be 4041 suspended due to rainfall conditions if the observed annual TP load, adjusted for regional 4042 projects (if present), from the basin exceeds the Annual Load Target and the rainfall falls 4043 outside the range of rainfall values for the Base Period (42.29 - 72.47 inches). The calculated 4044 Annual Load Targets and Annual Load Limits for the rainfall conditions observed during the 4045 WY1982-2010 period of record are summarized in Table 3-53. The annual performance 4046 determination process will account for pass-through loads and regional projects, as 4047 applicable, and is presented in the flowchart Figure 1-2.

- 4048 Comparison to WY2001-2010. A comparison of the WY2001-2010 observed loads to the
- 4049 Annual Load Targets and Limits is presented in Figure 3-43.
- 4050
- 4051
- 4052 4053

Table 3-53. Annual adjusted rainfall for the historical period of record for the EastCaloosahatchee Hydrologic Unit (Base Period: WY1982-1990).


Water	Observed	Rain	Target	Limit
Year	Load, mt	inches	Load, mt	Load, mt
1982	23.523	42.29	15.890	49.890
1983	191.161	72.47	124.848	166.380
1984	23.371	52.22	51.740	84.299
1985	110.460	47.99	36.469	69.134
1986	54.939	46.57	31.342	64.215
1987	77.368	56.21	66.145	99.307
1988	61.198	48.58	38.599	71.203
1989	28.798	46.03	29.392	62.366
1990	23.185	43.81	21.378	54.894
1991	35.224	52.85	54.015	86.624
1992	63.448	59.68	78.673	112.888
1993	68.616	52.67	53.365	85.958
1994	37.434	47.73	35.530	68.227
1995	61.030	57.57	71.055	104.574
1996	64.927	57.42	70.513	103.989
1997	21.435	47.75	35.602	68.296
1998	57.387	62.17	87.662	122.911
1999	52.252	42.46	16.504	50.445
2000	53.363	60.47	81.525	116.044
2001	-3.251	34.44	-12.451	25.343
2002	71.866	54.89	61.379	94.268
2003	101.832	61.45	85.063	119.990
2004	92.878	54.29	59.213	92.001
2005	7.725	52.49	52.715	85.293
2006	93.518	57.97	72.499	106.137
2007	54.034	37.94	0.185	36.039
2008	18.112	51.49	49.105	81.627
2009	89.044	46.30	30.367	63.289
2010	66.063	63.32	91.814	127.612

Note: Shaded water years indicate the performance determination would have been suspended due to anomalous rainfall coupled with the observed load being greater than the Load Target.

Figure 3-43. Comparison of WY2001-2010 loads with Base Period loads and Annual Load Targets, adjusted for hydrologic variability, for the East Caloosahatchee Hydrologic Unit.

4063

4064 Note: The performance determination for WY2001 and WY2007 would have been suspended due to rainfall below the minimum value during the Base Period coupled with the observed load being greater than the Load Target.
4067

4068 **Exceedance Frequency Analysis.** As shown in Figure 3-42, although the scaled observed 4069 loads fall above the Annual Load Target roughly half the time (five out of nine years, or 55 4070 percent), only the scaled observed load for WY 1985 exceeded the calculated Annual Load 4071 Limit during the base period. In accordance with the proposed performance determination 4072 process discussed in Section 2.6, having the observed load exceed the Annual Load Limit would prevent the basin from meeting its performance measure for that year. In the case of 4073 the scaled Base Period data, this is an example of a Type I error¹⁹, or "false positive" – when 4074 the performance method suggests a lack of compliance when the basin's load actually 4075 achieves the long-term reduction goals. While this occurrence is not common, it is 4076

4077 statistically possible. The use of the upper 90 percent confidence limit for the Annual Load is 4078 consistent with the District's Chapter 40E-63 F.A.C., and has a theoretical Type I error (i.e., 4079 false positive) rate of approximately ten percent. Using the approach described in Section 4080 2.6, an approximation of the cumulative exceedance frequency for the determination 4081 methodology was estimated using a Monte Carlo approach based on the annual rainfall and 4082 the annual TP load of the Base Period (Table 3-54). Because the TP loads and rainfall 4083 statistics from the Base Period do not perfectly describe normal distributions (e.g., the 4084 medians are generally less than the means), the methodology includes conditional 4085 probabilities, and because the random number generator is imperfect, the exceedance 4086 frequencies deviate from the theoretical values shown in the second column. However, the 4087 results are determined to be reasonable and defensible since the cumulative exceedance 4088 frequency is less than the theoretical value of approximately 17.5 percent.

- 4089
- 4090 4091
- 4092

Table 3-54.	Exceedance frequencies for the proposed determination methodology for
	the East Caloosahatchee Hydrologic Unit.

Component of Performance Assessment	Theoretical Exceedance Frequency	Method Exceedance Frequency
Step 1. Load > Annual Load Target?	50%	50%
Step 2. Suspend assessment if Radj is outside the range and Load > Annual Load Target	<20%	9.2%
Step 3. Load > Annual Load Target for 3 consecutive years?	<12.5%	9.9%
Step 4. Load > Annual Load Limit?	<10%	4.3%
Cumulative Exceedance Frequency	<17.5%	13.1%

4093 4094

4095

4097 3.8 Upper Kissimmee Sub-watershed

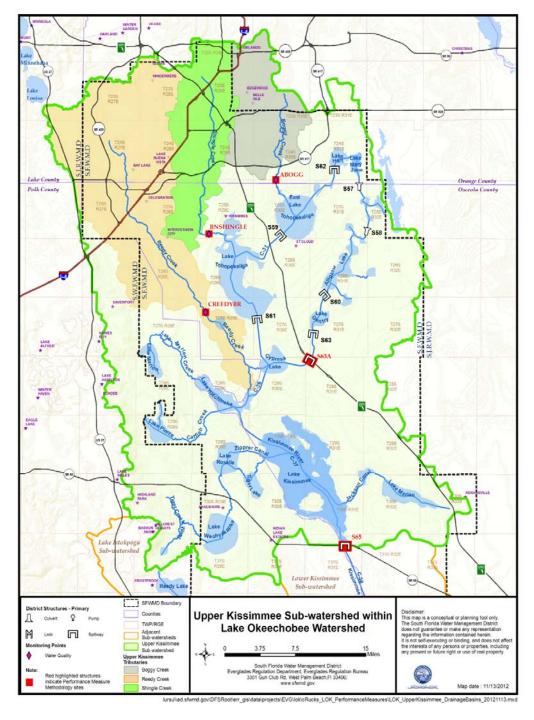
4099 The following sections present a description of the Upper Kissimmee Sub-watershed, a 4100 summary of historical flow and TP levels, the selection of Reference Periods, and the 4101 derivation of the resulting performance indicators for tributaries within the sub-watershed.

4102 4103

4098

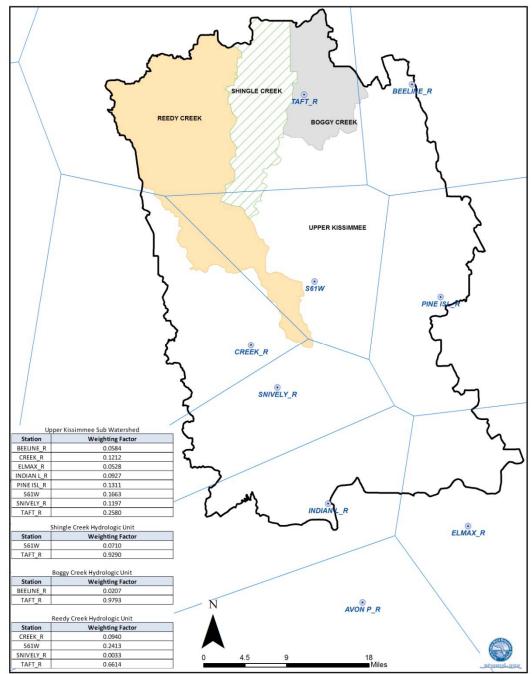
3.8.1 Background

4104 The Upper Kissimmee Sub-watershed is the headwaters of the Kissimmee-Okeechobee-4105 Everglades hydrologic system, and consists of 1,028,421 acres occupying portions of Lake, 4106 Orange, Osceola, and Polk Counties (Figure 3-44). The sub-watershed is composed of a 4107 large number of lakes connected by canals, creeks, and streams. Currently, canals connect 4108 all of the primary lakes to form the "Upper Kissimmee Chain of Lakes". Reedy Creek, 4109 Shingle Creek, and Boggy Creek are the largest tributaries in the sub-watershed. Lakes 4110 Kissimmee, Hatchineha, and Cypress are located at the downstream portion of the sub-4111 watershed. Outflows from the Upper Kissimmee Sub-watershed are discharged to the Lower 4112 Kissimmee Sub-watershed via S-65.

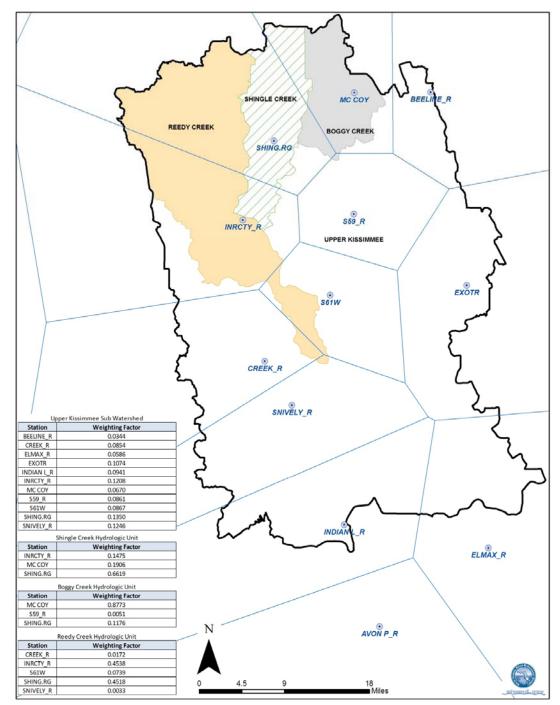

4113

4114 District staff identified the rainfall stations considered to be representative of the Upper 4115 Kissimmee Sub-watershed for the period WY1976-2010. A schematic of the sub-watershed 4116 with the various rain stations is presented in Figure 3-45 and Figure 3-46B (Figure 3-45 is 4117 for WY 1976-2007 and Figure 3-46 is for WY 2008 - Present). Monthly rainfall data and 4118 weighting factors for the rainfall stations were developed and provided by the District. 4119 Because of the nutrient attenuation effect of Lake Kissimmee, the nutrient loads discharged 4120 at S-65 may not be representative of stormwater runoff from within the sub-watershed, and thus the criteria for the establishment of a performance measure at S-65 were not met. 4121 4122 Therefore, tributaries upstream of Lake Kissimmee were evaluated to see if there were 4123 sufficient data to develop performance measure methodologies in the individual tributaries.

4124 Figure 3-44. Upper Kissimmee Sub-watershed boundary and discharge monitoring 4125 locations (from SFWMD).


4126

Gary Goforth, Inc. February 2013



4131 Figure 3-46. Schematic of Upper Kissimmee Sub-watershed (WY08-Present) (from 4132 SFWMD).

4134 Stormwater runoff from much of the sub-watershed flows directly into multiple lakes within 4135 the sub-watershed (i.e., the Upper Chain of Lakes) and the majority of inflow locations are 4136 not monitored. Review of available data identified monitoring sites located on only three 4137 major tributaries upstream of the Upper Chain of Lakes. These discharge monitoring 4138 locations are shown in Figure 3-44 and are further described below. In addition to the three 4139 major tributaries, there was another structure (S-63A) where both flow and water quality data 4140 are available (also shown in Figure 3-44). The S-63A structure is located on C-34, just 4141 upstream of Cypress Lake. These four areas are described below:

- 4142
- 3. One site is located on Boggy Creek (ABOGG), which flows into East Lake
 Tohopekaliga. Monitoring has been conducted at that site for approximately 30
 years. Boggy Creek has a tributary area of approximately 52,415 acres, or roughly
 five percent of the Upper Kissimmee Sub-watershed area. Flow data are recorded at
 a nearby USGS gauge (Boggy Creek near Taft, FL: ID no. 02262900).
- 4148
 4. One site is located on Shingle Creek (BNSHINGLE), which flows into Lake
 4149
 4149 Tohopekaliga. Monitoring has been conducted at that site for approximately 30
 4150 years. Shingle Creek has a tributary area of approximately 68,153 acres, or roughly
 4151 seven percent of the Upper Kissimmee Sub-watershed area. Flow data are recorded at
 4152 a nearby USGS gauge (Shingle Creek at Campbell, FL: ID no. 02264495).
- 4153 5. One site is located on Reedy Creek (CREEDYBR), which flows into Cypress Lake 4154 and Lake Hatchineha downstream of Lake Tohopekaliga. Reedy Creek has a 4155 tributary area of approximately 172,116 acres, or roughly seventeen percent of the 4156 Upper Kissimmee Sub-watershed area. Water quality monitoring has been conducted 4157 at that site for approximately 26 years; however, this site is not located at the 4158 discharge point from the tributary. Therefore, CREEDYBR does not represent the 4159 entire Reedy Creek Tributary. Also, there is not a nearby flow station. The nearest 4160 USGS station for flow monitoring is located approximately 10 river miles upstream 4161 and would not be adequate to estimate load with TP data collected at this water

- quality monitoring site. However, it is recommended that monitoring be continued atthis site so that in the future it can be determined if there is an increasing trend.
- 6. One site is located on C-34 (S-63A) just upstream of Cypress Lake. Water quality
 monitoring was initiated in WY2008, thus there is not sufficient water quality or flow
 data to provide a complete historical data analysis. It is recommended that
 monitoring be continued at this site so that in the future it can be determined if there
 is an increasing trend.
- 4169

4170 Both water quality and flow data are available for the Boggy Creek and Shingle Creek 4171 tributaries. However, performance measures were not developed for these tributaries because 4172 the boundaries were not well defined. Instead, prediction equations for performance 4173 indicators are recommended for the upstream tributaries at Boggy Creek and Shingle Creek. 4174 Available data were deemed not adequate to establish performance indicators for the Reedy 4175 Creek and S-63A basins. However, the water quality from these areas will be assessed 4176 annually to determine if there is an increasing trend. It is also recommended that in the 4177 remaining portion of the Upper Kissimmee Sub-watershed that bi-weekly grab monitoring 4178 for total phosphorus be conducted at key locations and assessed annually to determine if 4179 there is an increasing trend.

4180

4181 The following section summarizes the performance indicators for Boggy Creek and Shingle4182 Creek.

4183 3.8.1.1 Performance Measure Methodology

- 4184
- 4185 Site 1: Boggy Creek

Annual flow and TP data for discharges from the Boggy Creek Tributary are summarized in
Table 3-55. For the development of the performance indicator, a Reference Period of
WY2001-2008 was selected for the following reasons:

- 4189 > it represents a period with minimal implementation of source controls. With the
 4190 selection of the Reference Period to precede significant source control
 4191 implementation, no additional calculation is necessary in the performance indicator
 4192 to account for prior source control implementation,
- 4193 \succ it represents a period of relatively constant land use practices,
- 4194 Feliable water quality and hydrologic data are available, and
- 4195 ➤ a strong correlation exists between annual TP loads and rainfall, allowing for a
 4196 performance indicator that explicitly incorporates hydrologic variability
- 4197
- 4198 The Reference Period is compared to the historical period of record and WY2001-2010 in
- 4199 Table 3-56.
- 4200

Table 3-55. Summary of historical data for ABOGG, the outlet structure for the Boggy Creek Tributary for the WY 2001-2010 period of record.

FWM Unit Area Unit Area **Rainfall Characteristics** Water Flow **TP** Load TP Conc Rainfall Kurtosis Coef. Of Var. Area Runoff Load Skewness $\mu g/L$ inches lbs/ac Year AF mt acres in/yr K CV S 2001 14,705 0.684 33.11 52,415 3.37 0.03 -0.987 0.890 0.696 38 2002 81,072 6.074 52.17 52,415 18.56 0.26 4.552 1.149 1.858 61 2003 114,393 9.034 64 78.11 52,415 26.19 0.38 -0.027 0.625 0.654 2004 70,089 3.961 46 54.94 52,415 16.05 0.17 2.017 0.919 1.359 2005 112,478 8.865 64 66.09 52,415 25.75 0.37 -1.434 0.849 0.655 52,415 2006 94,911 6.318 54 58.21 21.73 0.27 2.057 1.230 1.480 2007 22,714 0.832 30 37.94 52,415 5.20 0.03 -0.503 0.773 0.921 2008 37,085 1.507 33 45.58 52,415 8.49 0.06 3.993 0.762 1.492 3.239 47 2009 56,235 42.66 52,415 12.87 0.14 0.016 0.962 1.076 2010 88,570 3.760 34 69.45 52,415 20.28 0.16 3.080 0.604 1.370 30 Minimum 14,705 0.684 33.11 52,415 3.37 0.03 -1.434 0.604 0.654 69,225 4.427 52 53.83 52,415 15.85 0.19 1.276 0.876 1.156 Average Maximum 114,393 9.034 64 78.11 52,415 26.19 0.38 4.552 1.230 1.858 35,627 3.069 13 0.13 2.146 0.203 Std. Dev. 14.46 0 8.16 0.418 Skewness -0.305 0.339 0.113 0.239 0.000 -0.305 0.34 0.289 0.441 0.138 Median 75,581 3.861 47 53.56 52,415 17.30 0.16 1.017 0.870 1.218

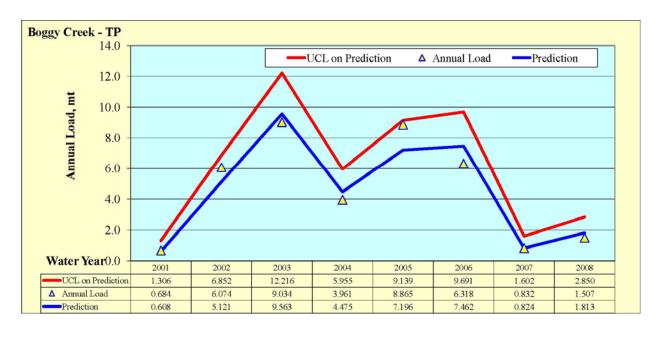
- 4204
- 4205
- 4206
- 4207
- 4208

4209 Table 3-56. Comparison of the Reference Period with the period of record data for 4210 Boggy Creek.

4211

	Flow	TP Load	TP Conc	Rainfall	UAL				
Metric	AF	mt	μg/L	inches	lbs/ac				
Period of Record - WY2001-2010									
Annual Minimum	14,705	0.684	30	33.11	0.03				
Annual Average	69,225	4.427	52	53.83	0.19				
Annual Median	75,581	3.861	47	53.56	0.16				
Annual Maximum	114,393	9.034	64	78.11	0.38				
Preliminary Reference Period WY2001-2008									
Annual Minimum	14,705	0.684	30	33.11	0.03				
Annual Average	68,431	4.659	55	53.27	0.20				
Annual Median	75,581	5.018	50	53.56	0.21				
Annual Maximum	114,393	9.034	64	78.11	0.38				
Differe	ence between P	eriod of Reco	rd and Refere	nce Period					
Annual Minimum	0	0.000	0	0.00	0.000				
Annual Average	794	-0.232	-3	0.56	-0.010				
Annual Median	0	-1.157	-4	0.00	-0.049				
Annual Maximum	0	0.000	0	0.00	0.000				
Annual Minimum	0%	0%	0%	0%	0%				
Annual Average	1%	-5%	-6%	1%	-5%				
Annual Median	0%	-23%	-7%	0%	-23%				
Annual Maximum	0%	0%	0%	0%	0%				
	Preliminary Re	eference Period	d WY2001-2	008					
Annual Minimum	14,705	0.684	30	33.11	0.03				
Annual Average	68,431	4.659	55	53.27	0.20				
Annual Median	75,581	5.018	50	53.56	0.21				
Annual Maximum	114,393	9.034	64	78.11	0.38				
		WY2001-20	10						
Annual Minimum	14,705	0.684	30	33.11	0.03				
Annual Average	69,225	4.427	52	53.83	0.19				
Annual Median	75,581	3.861	47	53.56	0.16				
Annual Maximum	114,393	9.034	64	78.11	0.38				
	ence between V	WY2001-201	0 and Referen	nce Period					
Annual Minimum	0	0.000	0	0.00	0.00				
Annual Average	794	-0.232	-3	0.56	-0.01				
Annual Median	0	-1.157	-4	0.00	-0.05				
Annual Maximum	0	0.000	0	0.00	0.00				
Annual Minimum	0%	0%	0%	0%	0%				
Annual Average	1%	-5%	-6%	1%	-5%				
Annual Median	0%	-23%	-7%	0%	-23%				
Annual Maximum	0%	0%	0%	0%	0%				

4213	Based on the fact that the annual median total phosphorus concentration for the period of
4214	record (47 μ g/l) is below the Numeric Nutrient Criteria (120 μ g/l for TP) (Chapter 62-302,
4215	F.A.C.), it is recommended that no reduction goal be applied to tributary. An Annual Load
4216	Target and an Annual Load Limit for the Boggy Creek Tributary will be calculated
4217	according to the following equations and explanation:
4218	
4219	Target = $(-2.39491 + 0.05939 \text{ X} + 1.35719 \text{ C})^2$
4220	Explained Variance = 98.0 percent, Standard Error of Regression Equation = 0.2072
4221	Predictors (X a n d C) are calculated from the first two moments (m_1, m_2)
4222	m_2) of the 12 monthly rainfall totals (r_i , i=1 to 12, inches) for the Evaluation
4223	Year:
4224	$m_1 = Sum [r_i] / 12$
4225	$m_2 = Sum [r_i - m_1]^2 / 12$
4226	$X = 12 m_1$
4227	$C = [(12/11) m_2]^{0.5}/m_1$
4228	$1 \cdot \cdot \cdot = 1 + (77 - 1) + (1 + 77500 - (77))^2$
4229	Limit = $[sqrt (Target) + (1.47588 SE)]^2$
4230	SE = standard error of the predicted sqrt (Load) for May-April interval
4231	SE = 0.20722 $[1 + 1/8 + 0.0007 (X-X_m)^2 + 3.58103 (C-C_m)^2 + 0.0135 (X-X_m) (C-C_m)^2]$
4232	$(C_m)]^{0.5}$
4233	
4234	Where:
4235	X = the 12-month total rainfall (inches)
4236	C = coefficient of variation calculated from 12 monthly rainfall totals
4237	X_m = average value of the predictor in reference period = 53.269 inches
4238	C_m = average value of the predictor in reference period = 0.89963
4239	


The first predictor (X) indicates that load increases with total annual rainfall. The second predictor (C) indicates that the load resulting from a given annual rainfall is higher when the distribution of monthly rainfall has higher variability. For a given annual rainfall, the lowest load occurs when rainfall is evenly distributed across months and the highest load occurs when all of the rain falls in one month. Real cases are likely to fall in between.

4245

4246 A comparison of the observed loads and the resulting Targets and Limits for the Reference 4247 Period are presented in **Figure 3-47.** Annual TP loads at the tributary outlet monitoring 4248 location, adjusted to account for regional projects (as applicable) and pass-through loads as 4249 described in Appendix A, will be evaluated against the performance measure described 4250 above.

4251

 Figure 3-47. Comparison of observed annual loads with the Annual Load Targets and Limits for the Boggy Creek Tributary.
 4254

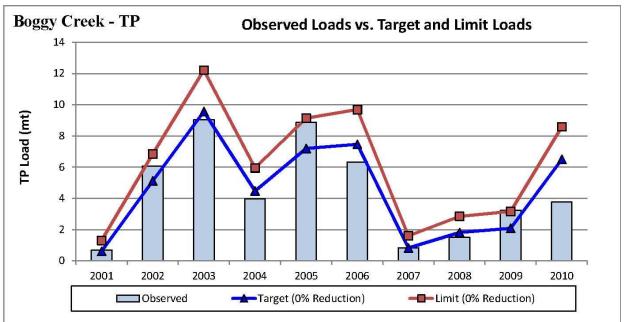
4257	Suspension of Performance Determination. The performance determination will be
4258	suspended due to rainfall conditions if the observed annual TP load from the basin, adjusted
4259	for regional projects (if present), exceeds the Annual Load Target and the adjusted rainfall
4260	falls outside the range of adjusted rainfall values for the Reference Period (32.89 - 71.83
4261	inches), as derived below. Rainfall conditions will be assessed by calculating an adjusted
4262	rainfall amount which reflects the cumulative effect of the predictor variables of the Annual
4263	Load Target equation. The adjusted rainfall is the rainfall that would produce the equivalent
4264	annual load using the Annual Load Target equation by setting the value of C to its mean
4265	value for the calibration period.
4266	
4267	Adjusted Rain = $X + 22.85216$ (C - 0.89963)
4268	
4269	The calculated adjusted rainfall values, Annual Load Targets and Annual Load Limits for the
4270	WY2001-2010 period of record are summarized in Table 3-57.
4271	
4272	The annual performance determination process will account for pass-through loads and
4273	regional projects, as applicable, and is presented in the flowchart in Figure 1-2.
4274	
4275	Comparison to WY2001-2010. A comparison of the WY2001-2010 observed loads to the
4276	Annual Load Targets and Limits is presented in Figure 3-48.
4277	
4278	
4279	
4280	
4281	
4282	
4283	

4284Table 3-57. Annual adjusted rainfall for the historical period of record for the Boggy4285Creek Tributary (Reference Period: WY2001-2008).

4286

Water	Observed	Rain	CV	Target	Limit	Adjusted
Year	Load, mt	in		Load, mt	Load, mt	Rain, in
2001	0.684	33.11	0.890	0.608	1.307	32.89
2002	6.074	52.17	1.149	5.121	6.852	57.87
2003	9.034	78.11	0.625	9.563	12.216	71.83
2004	3.961	54.94	0.919	4.475	5.955	55.38
2005	8.865	66.09	0.849	7.196	9.139	64.93
2006	6.318	58.21	1.230	7.462	9.691	65.76
2007	0.832	37.94	0.773	0.824	1.603	35.05
2008	1.507	45.58	0.762	1.813	2.850	42.43
2009	3.239	42.66	0.962	2.086	3.170	44.09
2010	3.760	69.45	0.604	6.500	8.591	62.69

4287


4288

4289

4290 4291

4292

Figure 3-48. Comparison of WY2001-2010 loads with Reference Period loads and Annual Load Targets, adjusted for hydrologic variability, for the Boggy Creek Tributary.

Note: The Reference Period extended from WY2001-2008.

Exceedance Frequency Analysis. Using the approach described in Section 2.6, an 4295 4296 approximation of the cumulative exceedance frequency for the determination methodology 4297 was estimated using a Monte Carlo approach based on the annual rainfall and the annual TP 4298 loads of the Base Period (Table 3-58). Because the TP loads and rainfall statistics from the 4299 Base Period do not perfectly describe normal distributions (e.g., the medians are generally 4300 less than the means), the methodology includes conditional probabilities, and because the 4301 random number generator is imperfect, the exceedance frequencies deviate from the 4302 theoretical values shown in the second column. However, the results are determined to be 4303 reasonable and defensible since the cumulative exceedance frequency is less than the 4304 theoretical value of approximately 17.5 percent.

4305 4306 4307

4308

Table 3-58. Exceedance frequencies for the proposed determination methodology for
the Boggy Creek basin.

Component of Performance Assessment	Theoretical Exceedance	Method Exceedance	
	Frequency	Frequency	
Step 1. Load > Annual Load Target?	50%	50%	
Step 2. Suspend assessment if Rain _{adj} is outside the range	<20%	9.9%	
and Load > Annual Load Target	12070	5.570	
Step 3. Load > Annual Load Target for 3 consecutive years?	<12.5%	9.7%	
Step 4. Load > Annual Load Limit?	<10%	1.9%	
Cumulative Exceedance Frequency	<17.5%	10.9%	

4312 Site 2: Shingle Creek

- 4313 Annual flow and TP data for discharges from the Shingle Creek Tributary are summarized
- 4314 in Table 3-59. For the development of the performance indicator, a Reference Period of
- 4315 WY1999-2007 was selected for the following reasons:
- 4316 > it represents a period with minimal implementation of source controls. With the
 4317 selection of the Reference Period to precede significant source control
 4318 implementation, no additional calculation is necessary in the performance indicator
 4319 to account for prior source control implementation,
- 4320 \succ it represents a period of relatively constant land use practices,
- 4321 Feliable water quality and hydrologic data are available, and
- 4322 > a strong correlation exists between annual TP loads and rainfall, allowing for a
 4323 performance indicator that explicitly incorporates hydrologic variability
- 4324
- 4325 The Reference Period is compared to the historical period of record and WY2001-2010 in
- 4326 Table 3-60.
- 4327

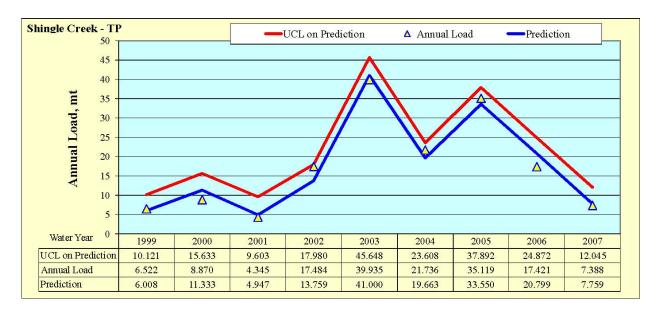
4328 Table 3-59. Summary of historical data for BNSHINGLE, the outlet structure for the 4329 Shingle Creek Tributary for the WY 1999-2010 period of record. 4330

Water	Flow	Load	FWM	Rainfall	Unit Area	Unit Area	Kurtosis	Coef. Of Var.	Skewness
Year	AF	mt	Conc, µg/L	inches	Runoff, inches	Load, Ibs/ac	К	CV	S
1999	80,049	6.522	66	40.77	14.09	0.21	1.881	0.974	1.495
2000	95,791	8.870	75	49.97	16.87	0.29	4.365	1.057	1.875
2001	43,203	4.345	82	33.59	7.61	0.14	-0.960	0.897	0.696
2002	143,879	17.484	99	51.94	25.33	0.57	4.200	1.127	1.793
2003	300,377	39.935	108	76.98	52.89	1.29	-0.036	0.625	0.680
2004	214,290	21.736	82	53.90	37.73	0.70	1.913	0.907	1.324
2005	319,611	35.119	89	64.88	56.28	1.14	-1.344	0.851	0.685
2006	184,112	17.421	77	57.80	32.42	0.56	2.337	1.229	1.530
2007	87,421	7.388	69	37.45	15.39	0.24	-0.604	0.766	0.903
2008	132,363	10.956	67	43.71	23.31	0.35	5.591	0.754	1.888
2009	95,280	10.724	91	36.42	16.78	0.35	2.629	0.942	1.551
2010	231,653	18.445	65	75.82	40.79	0.60	0.617	0.641	0.817
Minimum	43,203	4.345	65	33.59	7.61	0.14	-1.344	0.625	0.680
Average	160,669	16.579	84	51.94	28.29	0.54	1.716	0.898	1.270
Maximum	319,611	39.935	108	76.98	56.28	1.29	5.591	1.229	1.888
Std. Dev.	89,684	11.207	14	14.73	15.79	0.36	2.250	0.185	0.484
Median	138,121	14.189	80	50.96	24.32	0.46	1.897	0.902	1.410
Skewness	0.627	1.147	0.660	0.574	0.63	1.15	0.251	0.184	-0.080

4332 Table 3-60. Comparison of the Reference Period with the period of record data for 4333 Shingle Creek. 4334

Metric	Flow	TP Load	TP Conc	Rainfall	Unit Area				
Wietric	AF	mt	μg/L	inches	Load, lbs/ac				
Period of Record - WY1999-2010									
Annual Minimum	43,203	4.345	65	33.59	0.14				
Annual Average	160,669	16.579	84	51.94	0.54				
Annual Median	138,121	14.189	80	50.96	0.46				
Annual Maximum	319,611	39.935	108	76.98	1.29				
	Refer	ence Period W	/Y1999-2007						
Annual Minimum	43,203	4.345	66	33.59	0.14				
Annual Average	163,193	17.647	88	51.92	0.57				
Annual Median	143,879	17.421	82	51.94	0.56				
Annual Maximum	319,611	39.935	108	76.98	1.29				
Diffe	rence betwee	n Period of Re	cord and Refe	rence Period					
Annual Minimum	0	0.000	-1	0.00	0.00				
Annual Average	-2,523	-1.068	-4	0.02	-0.03				
Annual Median	-5,758	-3.233	-3	-0.98	-0.10				
Annual Maximum	0	0.000	0	0.00	0.00				
Annual Minimum	0%	0%	-2%	0%	0%				
Annual Average	-2%	-6%	-5%	0%	-6%				
Annual Median	-4%	-19%	-3%	-2%	-19%				
Annual Maximum	0%	0%	0%	0%	0%				
		WY2001-	2010						
Annual Minimum	43,203	4.345	65	33.59	0.14				
Annual Average	175,219	18.355	85	53.25	0.59				
Annual Median	163,996	17.453	82	52.92	0.56				
Annual Maximum	319,611	39.935	108	76.98	1.29				
Diff	èrence betwee	en WY2001-2	010 and Refer	ence Period					
Annual Minimum	0	0.000	-1	0.00	0.00				
Annual Average	12,026	0.709	-3	1.33	0.02				
Annual Median	20,117	0.032	0	0.98	0.00				
Annual Maximum	0	0.000	0	0.00	0.00				
Annual Minimum	0%	0%	-2%	0%	0%				
Annual Average	7%	4%	-3%	3%	4%				
Annual Median	14%	0%	0%	2%	0%				
Annual Maximum	0%	0%	0%	0%	0%				

4337	Based on the fact that the annual median total phosphorus concentration for the period of
4338	record (80 μ g/l) is below the Numeric Nutrient Criteria (120 μ g/l) (Chapter 62-302, F.A.C.),
4339	it is recommended that no reduction goal be applied to tributary. An Annual Load Target
4340	and an Annual Load Limit for the Shingle Creek Tributary will be calculated according to
4341	the following equations and explanation:
4342	
4343	Target = -140.82331 + 43.29617 X + 9.1697 S
4344	Explained Variance = 96.9 percent, Standard Error of Regression Equation = 2.5823
4345	Predictors (X a n d S) are calculated from the first two moments $(m_1, m_{2,})$
4346	m_3) of the 12 monthly rainfall totals (r_i , i=1 to 12, inches) for the Evaluation
4347	Year:
4348	$m_1 = Sum [r_i] / 12$
4349	$m_2 = Sum [r_i - m_1]^2 / 12$
4350	$m_3 = Sum [r_i - m_1]^3 / 12$
4351	$X = 12 m_1$
4352	$S = (12/11) m_3 / m_2^{-1.5}$
4353 4354	Limit = Target + 1.440 SE
4355	SE = standard error of the Target for May-April interval
4356	$SE = 2.58225 [1 + 1/9 + 1.7741 (X-X_m)^2 + 0.52978 (S-S_m)^2 + 0.10178 (X-X_m) (S-S_m)^2 + 0.10178 (X-X_m)^2 + 0.10178 (X-X_m)^2$
4357	$S_{\rm m}$ S_{\rm
4358	
4359	Where:
4360	X = natural logarithm of the 12-month total rainfall (ln(inches))
4361	S = is the skewness of the annual rainfall calculated from 12 monthly rainfall totals
4362	X_m = average value of the predictor in reference period = 3.919


4363	S_m = average value of the predictor in reference period = 1.22011
4364	
4365	The first predictor (X) indicates that load increases exponentially with total annual rainfall.
4366	The second predictor (S) indicates that the load resulting from a given annual rainfall is
4367	higher when the distribution of monthly rainfall has higher skewness. For a given annual
4368	rainfall, the lowest load occurs when rainfall is evenly distributed across months and the

- 4369 highest load occurs when all of the rain falls in one month. Real cases fall in between.
- 4370

A comparison of the observed loads and the resulting Targets and Limits for the Reference
Period are presented in Figure 3-49. Annual TP loads at the tributary outlet monitoring
location, adjusted to account for regional projects (as applicable) and pass-through loads as
described in Appendix A, will be evaluated against the performance measure described
above.

4376

4377 Figure 3-49. Comparison of observed annual loads with the Annual Load Targets and
4378 Limits for the Shingle Creek Tributary.
4379

4381	Suspension of Performance Determination. The performance determination will be								
4382	suspended due to rainfall conditions if the observed annual TP load from the basin, adjusted								
4383	for regional projects (if present), exceeds the Annual Load Target and the adjusted rainfall								
4384	falls outside the range of adjusted rainfall values for the Reference Period (37.53 - 86.31								
4385	inches), as derived below. Rainfall conditions will be assessed by calculating an adjusted								
4386	rainfall amount which reflects the cumulative effect of the two variables that comprise the								
4387	Load Target equation: Rain and S:								
4388									
4389	Adjusted Rainfall = equivalent rainfall for mean S variable (inches)								
4390									
4391	Adjusted Rain = $\exp[X - 0.21179 (S - 1.22011)]$								
4392									
4393	The calculated adjusted rainfall values, Annual Load Targets and Annual Load Limits for the								
4394	WY1983-2010 period of record are summarized in Table 3-61.								
4395									
4396	The annual performance determination process will account for pass-through loads and								
4397	regional projects, as applicable, and is presented in the flowchart in Figure 1-2.								
4398									
4399	Comparison to WY2001-2010. A comparison of the WY2001-2010 observed loads to the								
4400	Annual Load Targets and Limits is presented in Figure 3-50.								
4401									
4402									
4403									
4404									
4405									
4406									
4407									

4408Table 3-61. Annual adjusted rainfall for the historical period of record for the Shingle4409Creek Tributary (Reference Period: WY2001-2008).

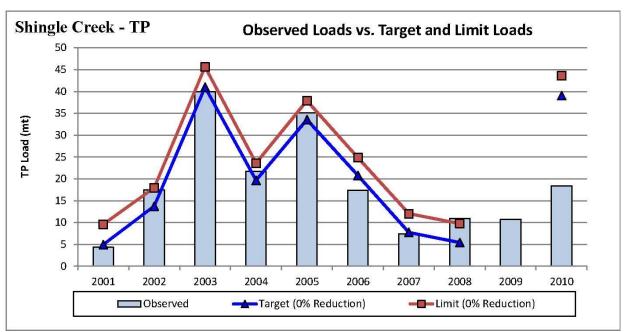
4410

Water	Observed	Ln(rain)		Target	SE	Limit	Adjusted
Year	Load, mt	0 202	S	Load, mt	Load, mt	Load, mt	Rain, in
1999	6.522	3.70795	1.495	6.008	2.857	10.121	38.46
2000	8.870	3.91142	1.875	11.333	2.987	15.633	43.50
2001	4.345	3.51423	0.696	4.947	3.234	9.603	37.53
2002	17.484	3.95009	1.793	13.759	2.931	17.980	46.01
2003	39.935	4.34355	0.680	41.000	3.228	45.648	86.31
2004	21.736	3.98713	1.324	19.663	2.740	23.608	52.73
2005	35.119	4.17254	0.685	33.550	3.015	37.892	72.67
2006	17.421	4.05699	1.530	20.799	2.829	24.872	54.13
2007	7.388	3.62301	0.903	7.759	2.977	12.045	40.05
2008	10.956	3.77758	1.888	5.419	3.026	9.776	37.94
2009	10.724	3.59512	1.551	0.609	2.993	4.919	33.96
2010	18.445	4.32836	0.817	39.086	3.140	43.607	82.58

4411

4412 4413

Note: Shaded water years indicate the performance determination would have been suspended due to anomalous rainfall coupled with the observed load being greater than the Load Target.


4414 4415

4416

4417

4418

Figure 3-50. Comparison of WY2001-2010 loads with Reference Period loads and Annual Load Targets, adjusted for hydrologic variability, for the Shingle Creek Tributary.

Note: The Reference Period extended from WY2001-2007. The performance determination for WY2009 would have been suspended due to rainfall below the minimum value during the Reference Period coupled with the observed load being greater than the Load Target.

4423 Exceedance Frequency Analysis. Using the approach described in Section 2.6, an 4424 approximation of the cumulative exceedance frequency for the determination methodology 4425 was estimated using a Monte Carlo approach based on the annual rainfall and the annual TP 4426 loads of the Base Period (Table 3-62). Because the TP loads and rainfall statistics from the 4427 Base Period do not perfectly describe normal distributions (e.g., the medians are generally 4428 less than the means), the methodology includes conditional probabilities, and because the 4429 random number generator is imperfect, the exceedance frequencies deviate from the 4430 theoretical values shown in the second column. However, the results are determined to be 4431 reasonable and defensible since the cumulative exceedance frequency is less than the 4432 theoretical value of approximately 17.5 percent.

4433

4434 Table 3-62. Exceedance frequencies for the proposed determination methodology for
 4435 the Shingle Creek basin.
 4436

Step 1. Load > Annual Load Target?50%50%Step 2. Suspend assessment if Radj is outside the range and Load > Annual Load Target<20%6.2%Step 3. Load > Annual Load Target for 3 consecutive years?<12.5%10.8%
Load > Annual Load Target < <20% 6.2%
Step 3. Load > Annual Load Target for 3 consecutive years?<12.5%
Step 4. Load > Annual Load Limit? <10% 3.0%
Cumulative Exceedance Frequency <17.5% 13.0%

4444 4445

4439 4440

4441

4442

4446 3.9 South Lake Okeechobee Sub-watershed

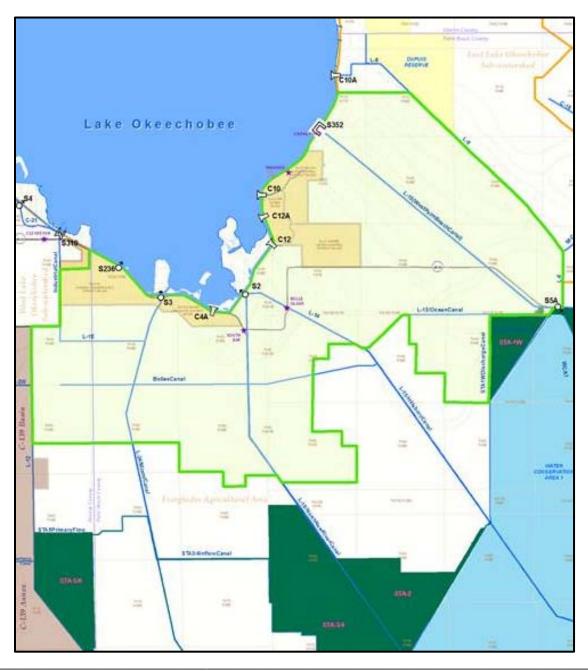
The South Lake Okeechobee Sub-watershed contains the northern Everglades Agricultural Area (EAA) including those portions of four special drainage districts established through Chapter 298 of the Florida Statutes historically discharging to Lake Okeechobee. In addition, Closter Farms, also known as 715 Farms and referenced as Agricultural Lease No. 3420 in the Everglades Forever Act (Chapter 473.4592, F.S.), is located within the South Lake Okeechobee Sub-watershed and historically discharged to the lake. These basins and structures discharging to Lake Okeechobee are presented in **Table 3-63** and **Figure 3-51**.

4455

4447

4456 Table 3-63. South Lake Okeechobee Sub-Watershed basins and Lake discharge
 4457 structures.
 4458

Basin Name	Structures discharging to Lake Okeechobee
Everglades Agricultural Area (EAA)	S2, S3, S352
East Beach Water Control District (EBWCD)	Culvert 10
East Shore Water Control District (ESWCD)	Culvert 12
South Shore Drainage District (SSDD)	Culvert 4A
South Florida Conservancy District (SFCD)	S-236
Closter Farms	Culvert 12A


4459 Because of the critical importance of the Kissimmee-Lake Okeechobee-Everglades 4460 ecosystem, many programs work in concert to protect the water resources of the region as a 4461 whole. The performance measure methodologies summarized herein for the South Lake 4462 Okeechobee Sub-watershed complement the other regulatory programs designed to support 4463 achievement of the Lake Okeechobee TP TMDL of 140 metric tons per year (mt/yr), as 4464 defined in Chapter 62-304.700, F.A.C. Section 2.4 describes the relationship between the 4465 TMDL program and the performance measure methodologies developed for Chapters 40E-61 4466 and 40E-63 F.A.C. The relationship between the 2011 LOPP planning level estimates and

- the performance measure methodologies summarized in this document is also described inSection 2.4.
- 4469 4470
- 4471

Figure 3-51. South Lake Okeechobee Sub-watershed boundary and monitoring locations for structures that discharge into Lake Okeechobee.

4473 The EAA Basin discharges to both Lake Okeechobee and, at times, to the Everglades 4474 Protection Area, although the primary receiving bodies for the southern discharges are the 4475 Everglades Stormwater Treatment Areas. The existing performance measure methodology 4476 for the collective source control programs within the EAA Basin is described in Chapter 40E-4477 63 F.A.C. and encompasses cumulative basin runoff loads, regardless of the direction of 4478 discharge. The following sections summarize the historical annual flow, TP and rainfall data, 4479 a summary of the existing performance methodology for the EAA Basin and a summary of 4480 the proposed performance measure methodologies for the Chapter 298 Districts.

4481 4482

4483

3.9.1 Summary of the Historic Data and Existing Performance Measure Methodology for the EAA Basin

The EAA Basin covers approximately 500,000 acres located south of Lake Okeechobee within eastern Hendry and western Palm Beach counties, an area of approximately 1,122 square miles of highly productive agricultural land comprised of rich organic peat or muck soils (SFWMD 2011b). The area is considered to be one of Florida's most important agricultural regions, with approximately 77 percent of the EAA devoted to agricultural production. The major crops in the EAA Basin include sugar cane, vegetables, and sod, with secondary crops in rice and citrus.

- 4491
- 4492 3.9.1.1 EAA Basin Background
- 4493

The goal of the Everglades Regulatory Program in the EAA Basin under Chapter 40E-63
F.A.C. is to reduce the TP loads discharged from the basin by 25 percent. The EAA
regulated area is defined by multiple hydrologic drainage sub-basins. EAA Basin runoff load
is based upon the total discharge load less pass-through computed inflows from other areas.
Although the boundaries of these sub-basins remain static, the acreage contributing flow and

used in the rule-adopted compliance model for determining EAA Basin TP load varies fromyear to year as regional projects are constructed.

4501 3.9.1.2 EAA Basin Historical Data

4502

The District conducts EAA basin-level monitoring at all inflow and outflow structures to be used for assessing compliance with the source control program performance measure methodology. Annual observed runoff TP load from the EAA Basin for primary compliance includes both inflow and outflow structures from the EAA at which TP concentrations and flows are measured. EAA Basin runoff loads are estimated after first calculating passthrough loads from other sources. Specific details are provided in the Draft Technical Support Document for Chapter 40E-63, F.A.C. (SFWMD 1992).

4510

A summary of the annual rainfall, total flows (i.e., basin runoff plus pass-through), and total
TP levels for the EAA is presented in Table 3-64 and Figure 3-52. A downward trend in
EAA flow volume and TP load in the direction of the lake is evident. This operational change
has resulted in a greater percentage of the discharge being directed to the STAs for treatment
and lowering the amount of discharge to the Lake Okeechobee, however, this diversion does
not contribute to meeting the total runoff load reduction requirements.

Table 3-64. Annual summary of total discharges from the EAA Basin.

4520

		Total (1) F	Tow from EA	AA Basin	Total (1) TP	Loads from	EAA Basin	TP Concentrations	
Water	Rainfall	Total	To Lake	Percent	Total	To Lake	Percent	Total	To Lake
Year	inches	AF	AF	to Lake	kg	kg	to Lake	μg/L	μg/L
1980	53.50	1,217,485	121,763	10%	172,102	26,560	15%	115	177
1981	35.05	609,935	6,916	1%	90,503	1,250	1%	120	146
1982	46.65	830,700	435,530	52%	235,235	107,824	46%	230	201
1983	64.35	2,053,263	365,911	18%	520,894	74,996	14%	206	166
1984	49.83	1,258,721	61,174	5%	240,896	20,129	8%	155	267
1985	39.70	1,156,918	74,015	6%	260,503	28,426	11%	183	311
1986	51.15	1,174,455	272,057	23%	211,732	66,555	31%	146	198
1987	51.97	1,337,859	14,327	1%	279,160	4,356	2%	169	247
1988	43.43	914,909	11,790	1%	166,176	2,595	2%	147	178
1989	39.68	1,000,027	2,037	0%	218,289	682	0%	177	271
1990	40.14	966,874	131,261	14%	168,724	44,116	26%	141	272
1991	50.37	699,690	53,102	8%	172,568	20,485	12%	200	313
1992	47.61	1,123,912	9,703	1%	126,689	2,786	2%	91	233
1993	61.69	2,719,477	46,937	2%	411,485	8,918	2%	123	154
1994	50.45	1,057,001	4,546	0%	138,484	567	0%	106	101
1995	67.01	2,340,460	74,955	3%	340,763	18,820	6%	118	204
1996	56.86	1,824,342	67,336	4%	246,022	12,467	5%	109	150
1997	52.02	1,204,192	12,924	1%	147,757	1,866	1%	99	117
1998	56.12	1,465,369	15,615	1%	188,813	3,320	2%	104	172
1999	43.42	1,251,036	68,358	5%	182,610	21,566	12%	118	256
2000	57.51	1,623,541	46,785	3%	250,974	12,118	5%	125	210
2001	37.28	811,773	43,771	5%	109,043	10,392	10%	109	192
2002	49.14	1,306,561	343,221	26%	127,072	42,187	33%	79	100
2003	45.55	1,668,000	2,839	0%	209,482	617	0%	102	176
2004	46.76	1,280,414	465	0%	129,176	131	0%	82	228
2005	50.98	2,131,470	22,054	1%	278,050	3,691	1%	106	136
2006	50.08	1,292,920	12,323	1%	218,231	2,767	1%	137	182
2007	37.23	844,300	4,225	1%	175,601	744	0%	169	143
2008	46.95	655,894	4,108	1%	103,703	622	1%	128	123
2009	43.72	1,028,954	38,774	4%	165,371	8,093	5%	130	169
2010	61.88	1,290,235	17,082	1%	213,556	4,018	2%	134	191
POR Minimum	35.05	609,935	465	0%	90,503	131	0%	79	100
POR Average	49.29	1,294,861	76,965	6%	209,666	17,860	9%	131	188
POR Maximum	67.01	2,719,477	435,530	52%	520,894	107,824	46%	230	313
Base Period					WY1980-198	-			
BP Minimum	35.05	609,935	6,916	1%	90,503	1,250	1%	115	146
BP Average	48.40	1,172,694	151,498	13%	241,911	36,966	15%	167	198

4521

4521

4522

BP Maximum

Notes:

2,053,263

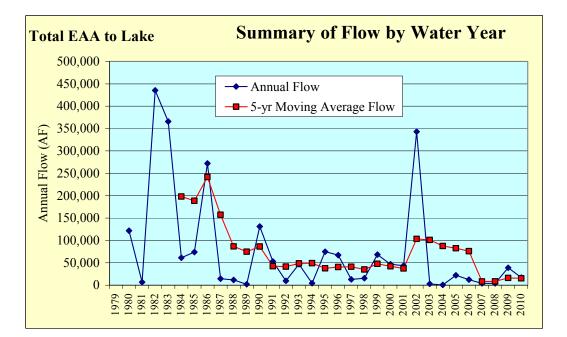
64.35

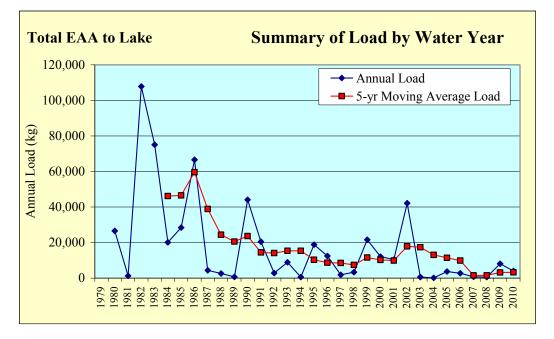
(1) Total includes flow-through from adjacent areas

435,530

52%

520,894


107,824


46%

230

Figure 3-52. Annual summary of total discharges from the EAA Basin to Lake Okeechobee.

4526

4528 3.9.1.3 EAA Basin Existing Performance Measure Summary

4530 To evaluate compliance with the EAA basin-level TP load reduction requirements, the 4531 District annually evaluates BMP performance consistent with Chapter 40E-63 F.A.C. The 4532 EAA Basin must demonstrate a 25 percent reduction in load annually compared to the pre-4533 BMP base period. Phosphorus load reduction calculations are conducted and reported 4534 annually. These calculations are made using an adjustment for the hydrologic variability associated with rainfall and surface water discharges over time. These adjusted equations, 4535 4536 calibrated to the WY1980-WY1988 base period (May 1, 1979 through April 30, 1988), 4537 attempt to predict what the average annual TP load would have been for the EAA Basin if the 4538 current water year's rainfall amount and monthly distribution had occurred during the base 4539 period.

4540

4529

4541 Compliance with EAA Basin performance goal is based on mathematical equations and 4542 methodology outlined in Chapter 40E-63, F.A.C. The target load is based upon a 25 percent 4543 reduction in loading as well as accounting for a reduction in the EAA Basin area by a factor 4544 equal to the current acreage divided by the baseline acreage. The performance determination 4545 is suspended if the adjusted rainfall for the Evaluation Year exceeds 63.76 inches and the 4546 basin load is above the target. Compliance is determined by comparing the observed runoff 4547 TP loads for the Evaluation Year, adjusted for pass-through loads, to the target loads from 4548 the base period.

4549

The EAA Basin has been in compliance with the Everglades Regulatory Program of BMPs
since the first compliance year, WY1996. Since the program's initiation, the EAA's average
annual percentage load reduction is greater than 50 percent.

3.9.2 Summary of the Chapter 298 Districts Historic Data and 4554 **Proposed Performance Measure Methodologies** 4555 4556 4557 The South Lake Okeechobee Sub-watershed contains four special drainage districts 4558 established through Chapter 298 of the Florida Statutes and Closter Farms, all located along the southern rim of Lake Okeechobee. In addition to discharging to the lake, the EBWCD, 4559 4560 SSDD and SFCD also historically discharged stormwater into the surrounding canals of the EAA. Funded from agricultural privilege taxes and other sources, infrastructure 4561 4562 improvements were completed between 2001 and 2005 to allow diversion of the lake 4563 discharges to the primary canal system of the EAA operated by the District: 4564 4565 ► EBWCD: diversion works completed July 2001 4566 \geq ESWCD: diversion works completed December 2001 4567 \geq Closter Farms: diversion works completed December 2001 4568 SSDD: diversion works completed July 2004 \geq 4569 ➢ SFCD: diversion works completed June 2005 4570 4571 These basins are herein collectively referred to as the "Chapter 298 Districts". Performance 4572 measure methodologies for these basins will evaluate levels in each basin's combined 4573 discharge to Lake Okeechobee and the diversion works to the EAA. These methodologies are 4574 summarized herein and detailed within the Draft – Performance Measure Methodology for the Chapter 298 Districts and Closter Farms (Goforth et al. 2013)²². 4575 4576

²² The performance measure methodologies for the Ch. 298 Districts were developed under a different contract than the Lake Okeechobee Watershed performance measure methodologies, resulting in slight differences in data presentation, e.g., the period of record extended through WY2012 for the Ch. 298 Districts.

4577 3.9.2.1 Background

4578

4579 Consistent with the Long-Term Plan for the Southern Everglades and the District's strategies 4580 for water quality restoration, the District administers a nutrient source control program within 4581 the Everglades Agricultural Area (EAA). The purpose of the nutrient source control program 4582 is to reduce nutrient loading from stormwater runoff to EAA canals, and ultimately to the 4583 District's stormwater treatment areas (STAs). Critical to meeting the nutrient reduction goals 4584 of the nutrient source control program, are best management practices (BMPs) which are 4585 implemented by stakeholders within the EAA, and are designed to reduce nutrient loading to 4586 stormwater runoff before its ultimate discharge to the District's STAs.

4587

4588 Performance measures quantify nutrient source control performance by establishing annual 4589 targets and limits for total phosphorus (TP) load. Performance measures have been 4590 developed for the EAA Chapter 298 Districts (East Beach Water Control District, East Shore 4591 Water Control District, South Florida Conservancy District, South Shore Water Control 4592 District, and the Closter Farms (Figure 3-53)) areas which historically discharged to Lake 4593 Okeechobee and were therefore excluded from the EAA Basin performance measures under 4594 Chapter 40E-63, F.A.C. Since the Closter basin discharges to the East Shore Water Control 4595 District (ESWCD) basin through the Closter diversion structure, with limited monitoring at 4596 that structure, Closter and ESWCD have been combined into a single basin for the purpose of 4597 the performance measure development. The resulting four basins discharge to different EAA 4598 canals (West Palm Beach, Hillsboro, North New River, and Miami), and ultimately to 4599 different STAs, therefore in developing performance measures, historic (base period) water 4600 quality and hydrologic monitoring data has been analyzed separately for each of the four 4601 basins.

- 4602
- 4603
- 4604

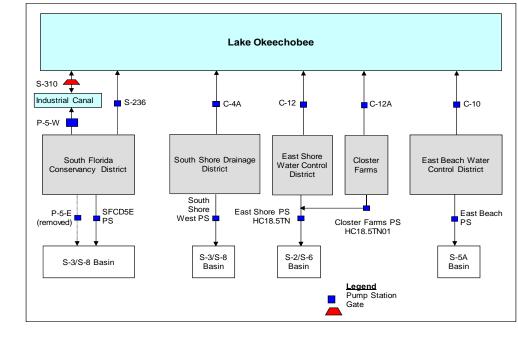


Figure 3-53. Ch. 298 District basins map and flow schematic.

4607

4608 4609

4605 4606

Gary Goforth, Inc. February 2013

- 4610 The following is a description of the general approach used to develop performance measures4611 for the EAA Chapter 298 Districts basins.
- 4612

4617

4613 3.9.2.2 Historical Data Analysis

4615 A summary of the annual rainfall, total flows, and total TP levels for the Chapter 298
4616 Districts is presented in Tables 3-66, 3-68, 3-70 and 3-72.

4618 Historical data analysis through Water Year 2012 (WY2012) was performed for each of the4619 EAA Chapter 298 District basins. The analysis included the following.

- analysis of flows and TP loads resulting from rainfall and runoff from each basin; and
- 4621 identification of representative rainfall monitoring stations and use of the Thiessen
 4622 polygon weighting method to estimate basin rainfall; and
- 4623 identification of an appropriate base period for each basin. The base period serves as 4624 the benchmark of historical observed data on which performance measures are based. 4625 Base periods should include sufficient concentration and flow data to adequately 4626 represent TP levels through a wide range of hydrologic conditions and be 4627 representative of current operating conditions affecting TP loadings. Base periods 4628 should also have reasonable correlation between rainfall and nutrient loads, should 4629 precede the full implementation of collective source control measures, and meet other 4630 statistical criteria.
- 4631

4632 Based on statistical analysis of base period water quality and hydrologic data, two equations, 4633 prediction (target) and upper confidence limit (limit) for annual TP load discharged, as a 4634 function of annual rainfall have been developed for each of the four basins. These equations 4635 provide TP load targets and TP load limits for discharges from each basin for a given year as 4636 a function of that given year's annual rainfall, as long as that given year's annual rainfall is 4637 within a statistically determined range based on base period data. The prediction and upper

4638 confidence limit equations provide predictions and limits for TP load based on a 25 percent
4639 reduction, and can be modified to predict an alternative TP load reduction goal. The
4640 equations so modified for a given load reduction, provide a metric for determining whether
4641 each individual basin is achieving that load reduction goal.

4642 3.9.2.3 Performance Measure Methodologies

4643

The general approach used to develop load based performance measures is described below 4644 4645 with summaries of the proposed phosphorus source control performance measure 4646 methodologies. In order to quantify the performance of nutrient reduction source controls, 4647 the performance measures and performance indicators establish annual TP targets for the 4648 basins regardless of the receiving waterbody. Thus, loads are included for all structures that 4649 serve a basin although they may not discharge directly into the lake. Thus, the source 4650 control program participants with property in a basin that can discharge to multiple 4651 watersheds will have one goal to achieve rather than multiple goals. Requirements for the 4652 Chapter 298 District basins to divert 80% of historic flow and load discharges to Lake 4653 Okeechobee are currently specified in their respective Environmental Resource Permits and 4654 are not a topic of this document.

4655

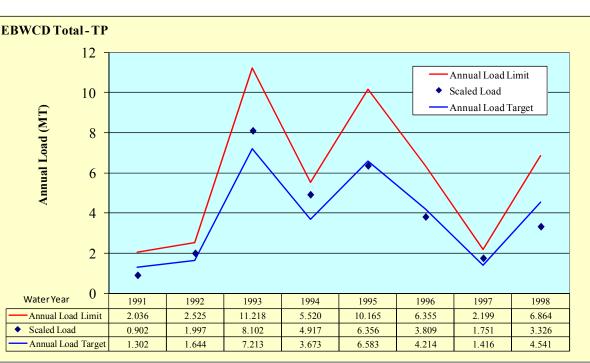
4656 A total of over one hundred alternative regression equations were examined for each4657 drainage basin.

Fifty-four (54) regression equations correlating annual load with annual rainfall and
 monthly rainfall characteristics (coefficient of variation, skewness and kurtosis) were
 evaluated.

Fifty-four (54) regression equations correlating annual concentration with annual rainfall and monthly rainfall characteristics (coefficient of variation, skewness and kurtosis) were evaluated.

- Multiple statistical selection factors were analyzed in selecting the recommended regression equation for each basin. These included strength of correlation, statistical significance of regression coefficients, standard error of the regression equation, variance of residuals, co-linearity of predictor variables, presence of outliers, presence of temporal trends during the base period, and presence of over-parameterization.
- In the case of the South Shore Drainage District, the base period is not characterized by a strong relationship between rainfall and TP load. An attempt to improve the correlation by using an independent variable to represent seepage from Lake Okeechobee successfully improved the predictive capability for flows, however, this did not improve the predictive capability for TP loads. For this basin, an alternative method of establishing annual predictions and UCL is recommended. The annual predicted value would be set equal to the base period average (arithmetic mean).
- 4677
- 4678 Annual Performance Determination
- 4679

4680 TP loads discharged at each of the EAA Chapter 298 District basins discharge structures will 4681 be assessed on an annual basis against the Annual Load Target and the Annual Load Limit 4682 (Figure 1-2). Tables 3-65, 3-67, 3-69, and 3-71 present summaries of the equations for 4683 calculating the annual load targets, limits, and minimum and maximum rainfall values used 4684 to establish a rainfall range for TP load based performance measures for the EAA Chapter 4685 298 District basins. Figures 3-54 - 3-57 provide comparisons of the scaled load data with the 4686 proposed targets and limits for the base periods for each of the basins. Tables 3-66, 3-68, 3-4687 70, and 3-72 present summaries of historic discharges for the period of record for each of the 4688 basins.



4690 4691	Table 3-65. East	Table 3-65. East Beach Water Control District TP Load Performance Measure.								
	Base Period Median	Explained Variance	Recommended	Base Perio	od Rainfall					
	Annual Load	R^2	Source Control	Minimum	Maximum					
	mt		Reduction	inches	inches					
	4.757	89%	25%	45.71	68.05					
	$Target = exp[-16.17942 + 4.30194 \ln(Rain)]$									
	Limit = Target	t* exp(0.38288 sqrt[1.	125 + (ln(Rain) - 4.0289	$(02)^2 / 0.1790^2$	4])					

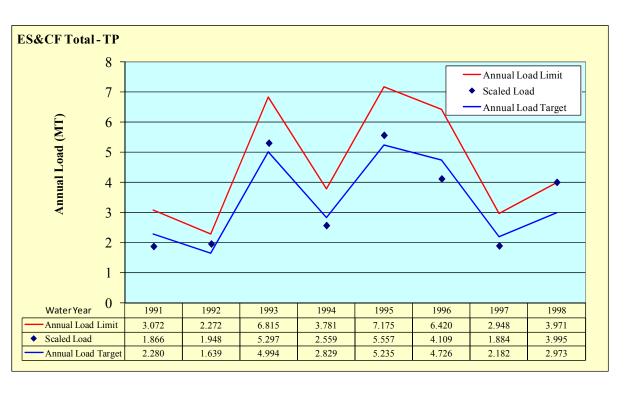
4693Figure 3-54. Comparison of the scaled Base Period annual TP loads with the Annual
Targets and Limits for the EBWCD based on a 25% load reduction.

4695

4696 4697

Table 3-66. Summary of historical discharges from EBWCD.

Flow	TP Load	FWM TP Conc	Rainfall	Area	Unit Area Runoff	Unit Area Load lbs/ac
Ar	mu	µg/L		acres	m/yr	ibs/ac
1 357	1 203	224		6 542	7 99	0.41
,				,		0.90
,				,		3.64
				,		2.21
,						2.21
				,		1.71
,				/		0.79
-				/		1.49
				,		3.57
,				/		4.26
						0.44
,						3.15
						2.70
				,		2.97
,				,		5.07
				,		3.62
						1.88
				,		1.88
,				,		4.32
				,		6.78
,				,		1.93
,				,		0.91
· ·				/		0.41
				,		2.61
				/		6.78
,				,		1.62
· · ·				v		0.73
				6.542		2.46
	Flow AF 4,357 4,970 15,558 16,827 19,909 15,969 8,226 16,595 20,284 33,161 6,074 21,103 20,419 23,744 28,216 18,162 12,438 8,795 16,046 20,131 10,640 5,300 4,357 15,769 33,161 7,649 0.288 16,321	AF mt 4,357 1.203 4,970 2.663 15,558 10.804 16,827 6.553 19,909 8.475 15,969 5.079 8,226 2.335 16,595 4.434 20,284 10.587 33,161 12.656 6,074 1.318 21,103 9.360 20,419 8.022 23,744 8.824 28,216 15.033 18,162 10.748 12,438 5.588 8,795 5.593 16,046 12.811 20,131 20.127 10,640 5.717 5,300 2.704 4,357 1.203 15,769 7.756 33,161 20.127 7,649 4.803 0.288 0.734	Flow AF TP Load mt TP Conc µg/L 4,357 1.203 224 4,970 2.663 434 15,558 10.804 563 16,827 6.553 316 19,909 8.475 345 15,969 5.079 258 8,226 2.335 230 16,595 4.434 217 20,284 10.587 423 33,161 12.656 309 6,074 1.318 176 21,103 9.360 360 20,419 8.022 318 23,744 8.824 301 28,216 15.033 432 18,162 10.748 480 12,438 5.588 364 8,795 5.593 516 16,046 12.811 647 20,131 20.127 811 10,640 5.717 436 5,300 2.704 414 //display	Flow AFTP Load mtTP Conc µg/LRainfall inchesAFmtµg/Linches4,3571.20322445.714,9702.66343448.2615,55810.80456368.0516,8276.55331658.1719,9098.47534566.6215,9695.07925860.068,2262.33523046.6116,5954.43421761.1120,28410.58742340.5833,16112.65630959.696,0741.31817635.7421,1039.36036043.1120,4198.02231852.5123,7448.82430155.4528,21615.03343265.3118,16210.74848042.7512,4385.58836442.398,7955.59351647.1516,04612.81164748.9620,13120.12781163.0710,6405.71743641.615,3002.70441435.014,3571.20317635.0115,7697.75639951.2733,16120.12781168.057,6494.80315110.190.2880.7341.0940.147	Flow AF TP Load mt TP Conc µg/L Rainfall inches Area acres 4,357 1.203 224 45.71 6,542 4,970 2.663 434 48.26 6,542 15,558 10.804 563 68.05 6,542 16,827 6.553 316 58.17 6,542 19,909 8.475 345 66.62 6,542 15,969 5.079 258 60.06 6,542 8,226 2.335 230 46.61 6,542 16,595 4.434 217 61.11 6,542 20,284 10.587 423 40.58 6,542 21,103 9.360 360 43.11 6,542 20,419 8.022 318 52.51 6,542 23,744 8.824 301 55.45 6,542 23,744 8.824 301 55.45 6,542 12,438 5.588 364 42.39 6,542 <td< td=""><td>Flow AF TP Load mt TP Conc µg/L Rainfall inches Area acres Runoff in/yr 4,357 1.203 224 45.71 6,542 7.99 4,357 1.203 224 45.71 6,542 9.12 15,558 10.804 563 68.05 6,542 28.54 16,827 6.553 316 58.17 6,542 30.87 19,909 8.475 345 66.62 6,542 30.52 15,969 5.079 258 60.06 6,542 29.29 8,226 2.335 230 46.61 6,542 30.44 20,284 10.587 423 40.58 6,542 37.21 33,161 12.656 309 59.69 6,542 38.71 20,284 10.587 423 40.58 6,542 31.7 20,419 8.022 318 52.51 6,542 31.7 20,419 8.022 318 52.51 6,542 33.</td></td<>	Flow AF TP Load mt TP Conc µg/L Rainfall inches Area acres Runoff in/yr 4,357 1.203 224 45.71 6,542 7.99 4,357 1.203 224 45.71 6,542 9.12 15,558 10.804 563 68.05 6,542 28.54 16,827 6.553 316 58.17 6,542 30.87 19,909 8.475 345 66.62 6,542 30.52 15,969 5.079 258 60.06 6,542 29.29 8,226 2.335 230 46.61 6,542 30.44 20,284 10.587 423 40.58 6,542 37.21 33,161 12.656 309 59.69 6,542 38.71 20,284 10.587 423 40.58 6,542 31.7 20,419 8.022 318 52.51 6,542 31.7 20,419 8.022 318 52.51 6,542 33.



4703 4704	· · · · · · · · · · · · · · · · · · ·										
	Base Period Median	Explained Variance	Recommended	Base Period Rainfall							
	Annual Load	\mathbb{R}^2	Source Control	Minimum	Maximum						
	mt		Reduction	inches	inches						
	4.369	86%	25%	48.10	67.62						
	$Target = exp[-12.71472 + 3.41017 \ln(Rain)]$										
	Limit = Target	Limit = Target* exp(0.27273 sqrt[$1.125 + (\ln(Rain) - 4.05997)^2 / 0.11302$])									

Figure 3-55. Comparison of the scaled Base Period annual TP loads with the Annual Targets and Limits for the ESWCD & Closter based on a 25% load reduction.

4708

Table 3-68. Summary of historical discharges from ESWCD & Closter.

			FWM			Unit Area	Unit Area
Water	Flow	TP Load	TP Conc	Rainfall	Area	Runoff	Load
Year	AF	mt	μg/L	inches	acres	in/yr	lbs/ac
1990				38.28			
1991	11,337	2.488	178	52.99	11,534	11.80	0.48
1992	13,429	2.597	157	48.10	11,534	13.97	0.50
1993	32,569	7.062	176	66.69	11,534	33.88	1.35
1994	18,486	3.412	150	56.45	11,534	19.23	0.65
1995	34,326	7.409	175	67.62	11,534	35.71	1.42
1996	31,269	5.479	142	65.62	11,534	32.53	1.05
1997	19,790	2.512	103	52.31	11,534	20.59	0.48
1998	26,377	5.326	164	57.28	11,534	27.44	1.02
1999	25,059	2.999	97	39.83	11,534	26.07	0.57
2000	45,171	7.328	132	60.95	11,534	47.00	1.40
2001	12,677	2.422	155	40.30	11,534	13.19	0.46
2002	21,685	2.884	108	45.44	11,534	22.56	0.55
2003	32,692	3.621	90	54.93	11,534	34.01	0.69
2004	30,282	3.025	81	51.88	11,534	31.51	0.58
2005	41,209	7.752	153	67.14	11,534	42.87	1.48
2006	30,343	7.433	199	51.81	11,534	31.57	1.42
2007	21,011	4.202	162	40.82	11,534	21.86	0.80
2008	14,603	3.129	174	48.50	11,534	15.19	0.60
2009	22,304	3.912	142	46.36	11,534	23.21	0.75
2010	36,945	7.015	154	63.97	11,534	38.44	1.34
2011	18,327	2.534	112	42.89	11,534	19.07	0.48
2012	14,609	2.012	112	37.31	11,534	15.20	0.38
Minimum	11,337	2.012	81	37.31	11,534	11.80	0.38
Average	25,205	4.389	141	52.69	11,534	26.22	0.84
Maximum	45,171	7.752	199	67.62	11,534	47.00	1.48
Std. Dev.	9,634	2.038	33	9.65	0	10.02	0.39
Skewness	0.361	0.618	-0.330	0.135		0.361	0.62
Median	23,682	3.517	152	52.10	11,534	24.64	0.67

4724 4725	Table 3-69. SSDD TP Load Performance Measure.										
	Base Period	d Mean	n Explained Variance			Recommended		Bas	Base Period Rainfall		
	Annual I	Load		\mathbb{R}^2		Sou	rce Cor	ntrol	Mini	mum	Maximum
	mt					R	eductio	n	inc	hes	inches
	1.054	1	1	NA*			25%		42	.90	60.83
				Та	rget = (0.7905	mt				
				L	imit =	1.259 n	nt				
4726	* An alternative method of establishing annual target predictions and limit is recommended.										
4727	The annua	al target v	alue to be	equal t	o the sc	aled ba	se perio	od aver	age (ari	thmeti	c mean).
4729 4730 4731 4732		Figure 3-56. Comparison of the scaled Base Period annual TP loads with the Annual Targets and Limits for the SSDD based on a 25% load reduction.									
		1.8						— Annu	al Load Lin	nit	
	16 -		Scaled Load Annual Load Target								
	Annual Load (MT)	1.4						Annu		get	
	load	1.2 -		•							•
	ual I	1.0				•					
	Ann	0.8					•			•	
		0.6	•		•		•		•		
		0.4	·					•			
		0.2									
	Water Year	0.0	91 1992	1993	1994	1995	1996	1997	1998	1999	2000

Annual Load Limit

-Annual Load Target

Scaled Load

4733 4734 1.259

0.556

0.791

1.259

0.512

0.791

1.259

1.314

0.791

1.259

0.566

0.791

1.259

1.035

0.791

1.259

0.695

0.791

1.259

0.431

0.791

1.259

0.688

0.791

1.259

0.831

0.791

1.259

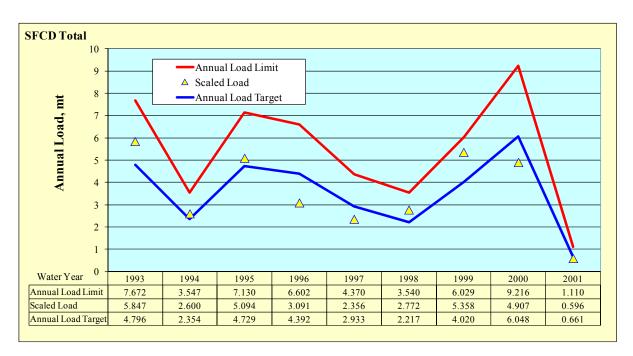
1.276

0.791

Table 3-70. Summary of historical discharges from SSDD.

4736	
------	--

			FWM			Unit Area	Unit Area
Water	Flow	TP Load	TP Conc	Rainfall	Area	Runoff	Load
Year	AF	mt	μg/L	inches	acres	in/yr	lbs/ac
1990				39.07			
1991	4,005	0.741	150	49.88	4,230	11.36	0.39
1992	6,041	0.683	92	48.81	4,230	17.14	0.36
1993	9,606	1.752	148	54.64	4,230	27.25	0.91
1994	7,307	0.755	84	48.28	4,230	20.73	0.39
1995	11,331	1.380	99	60.83	4,230	32.14	0.72
1996	8,882	0.927	85	56.77	4,230	25.20	0.48
1997	7,471	0.575	62	50.37	4,230	21.19	0.30
1998	7,522	0.917	99	53.83	4,230	21.34	0.48
1999	7,196	1.108	125	42.90	4,230	20.41	0.58
2000	11,413	1.701	121	51.32	4,230	32.38	0.89
2001	2,968	0.605	165	37.02	4,230	8.42	0.32
2002	3,156	0.518	133	43.65	4,230	8.95	0.27
2003	6,695	0.987	120	36.17	4,230	18.99	0.51
2004	5,534	0.581	85	43.36	4,230	15.70	0.30
2005	10,985	1.842	136	51.51	4,230	31.16	0.96
2006	15,122	2.521	135	58.39	4,230	42.90	1.31
2007	6,175	0.972	128	30.10	4,230	17.52	0.51
2008	2,763	0.568	167	36.77	4,230	7.84	0.30
2009	7,780	1.639	171	39.62	4,230	22.07	0.85
2010	12,286	2.227	147	55.47	4,230	34.85	1.16
2011	10,431	1.816	141	45.04	4,230	29.59	0.95
2012	8,128	1.173	117	43.47	4,230	23.06	0.61
Minimum	2,763	0.518	62	30.10	4,230	7.84	0.27
Average	7,854	1.181	122	47.19	4,230	22.28	0.62
Maximum	15,122	2.521	171	60.83	4,230	42.90	1.31
Std. Dev.	3,225	0.589	30	8.09	0	9.15	0.31
Skewness	0.277	0.776	-0.258	-0.285		0.277	0.78
Median	7,497	0.980	127	48.55	4,230	21.27	0.51



4740 4741	Table 3-71. SFCD TP Load Performance Measure.							
	Base Period Median	Explained Variance	Recommended	Base Period Rainfall				
	Annual Load	\mathbb{R}^2	Source Control	Minimum	Maximum			
	mt		Reduction	inches	inches			
	4.121	90%	25%	28.30	56.17			
	$Target = \exp(-10.37045 + 2.87238 \ln(Rain) + 0.68204 S)]$							
	S = the skewness calculated from 12 monthly rainfall totals							
	Limit = Target + 1.43976 (0.26292 $[1 + 1/9 + 3.0389 (\ln(Rain) - 3.85125)^2 + 0.92149 (S - 10.000)^2 + 0.92149 (S - 10.0000)^2 + 0.92149 (S - 10.0000)^2 + 0.0000)^2 + 0.0000)^2 + 0.00000)^2 + 0.00000)^2 + 0.00000)^2 + 0.00000)^2 + 0.00000)^2 + 0.00000)^2 + 0.00000)^2 + 0.00000)^2 + 0.00000)^2 + 0.0000000000000000000000000000000000$							
	$(0.63211)^2 - 0.4311 (\ln(\text{Rain}) - 3.85125) (8-0.63211)]^{0.5}$							
1710								

4743

4744 Figure 3-57. Comparison of the scaled Base Period annual TP loads with the Annual
4745 Targets and Limits for the SFCD based on a 25% load reduction.
4746

Table 3-72. Summary of historical discharges from SFCD.

	-						
Water	Flow	TP Load	FWM TP Conc	Rainfall	Area	Unit Area Runoff	Unit Area Load
Year	AF	mt	μg/L	inches	acres	in/yr	lbs/ac
1990	2.11	1110	μg/L	39.36	acies	iii/yi	105/ac
1990	6,991	1.528	177	49.96	9,775	8.58	0.34
1992	4,360	0.893	166	48.65	9,775	5.35	0.20
1992	24,809	7.796	255	46.67	9,775	30.46	1.76
1994	24,578	3.466	114	45.75	9,775	30.17	0.78
1995	36,654	6.792	150	54.74	9,775	45.00	1.53
1996	32,576	4.121	103	53.62	9,775	39.99	0.93
1997	20,416	3.141	125	46.90	9,775	25.06	0.71
1998	26,795	3.696	112	49.16	9,775	32.89	0.83
1999	39,814	7.144	145	49.21	9,775	48.88	1.61
2000	49,990	6.543	106	56.17	9,775	61.37	1.48
2001	5,952	0.795	108	28.30	9,775	7.31	0.18
2002	19,473	2.734	114	49.37	9,775	23.91	0.62
2003	27,283	2.977	88	44.02	9,775	33.49	0.67
2004	27,611	3.498	103	47.01	9,775	33.90	0.79
2005	35,241	4.456	103	65.42	9,775	43.26	1.00
2006	43,760	6.751	125	66.06	9,775	53.72	1.52
2007	15,385	2.177	115	37.08	9,775	18.89	0.49
2008	7,191	0.784	88	38.11	9,775	8.83	0.18
2009	21,358	3.140	119	43.63	9,775	26.22	0.71
2010	27,130	3.902	117	53.94	9,775	33.31	0.88
2011	14,710	1.475	81	39.53	9,775	18.06	0.33
2012	18,201	2.613	116	49.19	9,775	22.34	0.59
Minimum	4,360	0.784	81	28.30	9,775	5.35	0.18
Average	24,104	3.656	123	48.30	9,775	29.59	0.82
Maximum	49,990	7.796	255	66.06	9,775	61.37	1.76
Std. Dev.	12,414	2.144	38	8.56	0	15.24	0.48
Skewness	0.206	0.557	2.233	0.032		0.206	0.56
Median	24,694	3.304	115	48.91	9,775	30.31	0.75

4759	4. REFERENCES
4760 4761	Bottcher and Harper. 2003. Estimation of Best Management Practices and Technologies
4762	Phosphorus Reduction Performance and Implementation Costs in the Northern
4763	Watershed of Lake Okeechobee. Letter report to South Florida Water Management
4764	District, West Palm Beach, FL.
4765	
4766	Bottcher, A.B. 2006. Phosphorus Reduction Performance and Implementation Costs
4767	under BMPs and technologies in the Lake Okeechobee Protection Plan Area. Letter
4768	Report to South Florida Water Management District, West Palm Beach, FL.
4769	
4770	Burns and McDonnell 2008. Final Report on the S-4 Basin Feasibility Study. Prepared
4771	for the Everglades Agricultural Area Environmental Protection District and South
4772	Florida Water Management District. September 2008.
4773	Chambers, J., W. Cleveland, B. Kleiner. and P. Tukey. 1983. Graphical Methods for Data
4774	Analysis. Monterey, CA. Wadsworth, Inc.
4775	FDEP 1999. Florida Nonpoint Source Management Program Update. Florida
4776	Department of Environmental Protection, Division of Water Resource Management,
4777	Bureau of Watershed Management. Tallahassee, FL.
4778	FDEP 2007. Lake Okeechobee Operating Permit. Permit No. 0174552-001-GL. Issued
4779	by FDEP June 18, 2007.
4780	Goforth, G., with contributions from Jonathan Madden, Carlos Adorisio, Steve Sarley,
4781	Youchao Wang. 2011. DRAFT - Predictive Equations for Phosphorus Loads
4782	Discharged From the Chapter 298 Districts Along the Southern Border of Lake
4783	Okeechobee. Prepared for the South Florida Water Management District, September
4784	30, 2011.

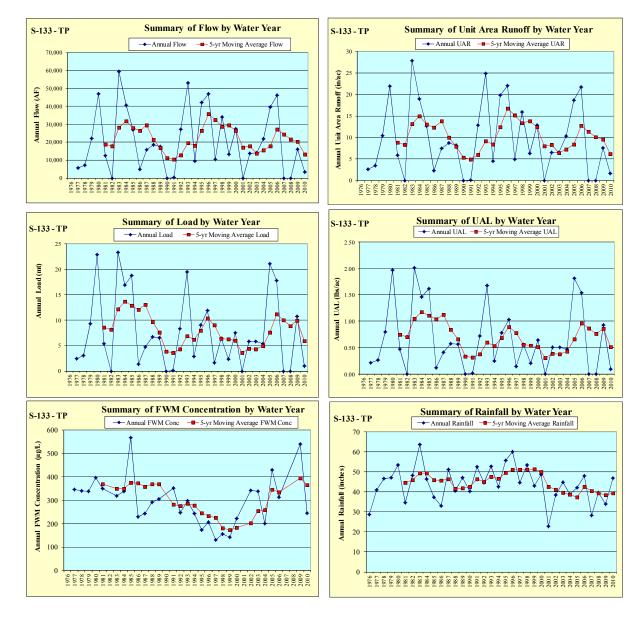
- 4785 Haan, C.T., 1977. Statistical methods in hydrology. The Iowa University Press, Iowa,
 4786 U.S.A.
- 4787
- HDR Engineering, Inc., 2011a. Data Analysis and Performance Measure Development
 for the St. Lucie River Watershed Source Control Programs, Deliverable 5.5 Final
 Analysis of Historical Data Report, prepared for the South Florida Water
 Management District, April 2011.
- HDR Engineering, Inc. 2011b. Data Analysis And Performance Measure Development
 For The Caloosahatchee River Watershed Source Control Programs, Deliverable 5.6,
 prepared for the South Florida Water Management District, September 2011.
- 4796

- HDR Engineering, Inc. 2011c. Data Analysis And Performance Measure Development
 For The St. Lucie River Watershed Source Control Program; Deliverable 6.4
 Collective Source Control Performance Measures for St. Lucie River Watershed
 Technical Report, prepared for the South Florida Water Management District,
 September 2011.
- 4802

4803 Karr, J.R. and D.R. Dudley. 1981. Ecological Perspective on Water Quality Goals.
4804 *Environmental Management*, 5: 55-68.

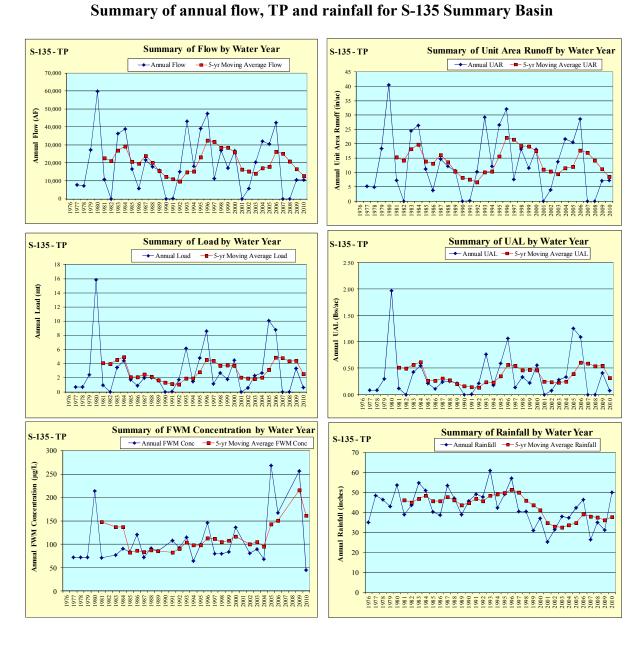
4805 SFWMD 1981. Lake Okeechobee Water Quality Studies and Eutrophication Assessment.
4806 Federico, A., K. Dickson, C. Kratzer, F. Davis. Technical Publication 81-2. DRE-128.
4807 Resource Planning Department, South Florida Water Management District. May 1981.

- 4809 SFWMD 1992. Draft Technical Document in Support of Chapter 40E-63, F.A.C. Works
 4810 of the District Within the Everglades (Subject To Review And Modification). March
 4811 3, 1992.
- 4812 SFWMD 1989. Interim Lake Okeechobee Surface Water Improvement and Management4813 Plan. South Florida Water Management District, West Palm Beach, FL.
- 4814 SFWMD 1993. Surface Water Improvement and Management Plan Update for Lake
 4815 Okeechobee. South Florida Water Management District. West Palm Beach, FL.
- 4816 SFWMD 1997. Surface Water Improvement and Management Plan Update for Lake4817 Okeechobee. South Florida Water Management District, West Palm Beach, FL.
- 4818 SFWMD 2002. Surface Water Improvement and Management Plan Update for Lake4819 Okeechobee. South Florida Water Management District, West Palm Beach, FL.
- 4820 SFWMD 2008. Lake Okeechobee Watershed Construction Project Phase 2 Technical
 4821 Plan. February 2008.
- 4822 SFWMD, FDEP, and FDACS 2011a. Lake Okeechobee Protection Plan Update. March
 4823 2011. Report prepared by the South Florida Water Management District, West Palm
 4824 Beach, FL; Florida Department of Environmental Protection, Tallahassee, FL; and
 4825 Florida Department of Agriculture and Consumer Services, Tallahassee, FL.
 4826 Available on-line at http://www.sfwmd.gov/northerneverglades.
- 4827 SFWMD 2011b. Chapter 4: Nutrient Source Controls for the South Florida Environment4828 in South Florida Environmental Report. March 2011.
- 4829
- 4830 SFWMD 2012. Chapter 4: Nutrient Source Controls for the South Florida Environment
 4831 in South Florida Environmental Report. March 2012.

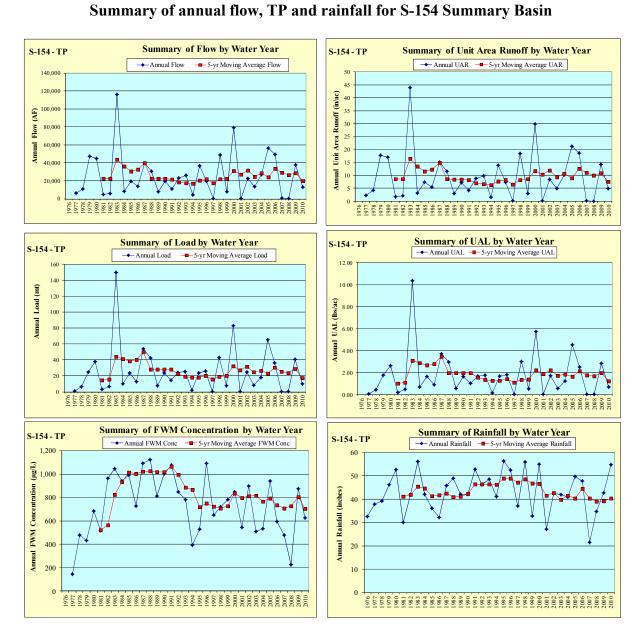

- 4832 Snedecor, G. and W. Cochran 1989. Statistical Methods Eighth Edition. Iowa State4833 University Press.
- 4834 SWET (Soil and Water Engineering Technology, Inc.). 2008. Final Report For Project
 4835 Entitled Nutrient Loading Rates, Reduction Factors and Implementation Costs
 4836 Associated with BMPs and Technologies. Prepared for the SFWMD, West Palm
 4837 Beach. July 14, 2008.

4838 APPENDIX A - SUPPLEMENTAL INFORMATION FOR THE DERIVATION OF 4839 THE PERFORMANCE MEASURE METHODOLOGIES FOR THE LAKE 4840 OKEECHOBEE WATERSHED 4841 4842 TAYLOR CREEK-NUBBIN SLOUGH SUB-WATERSHED

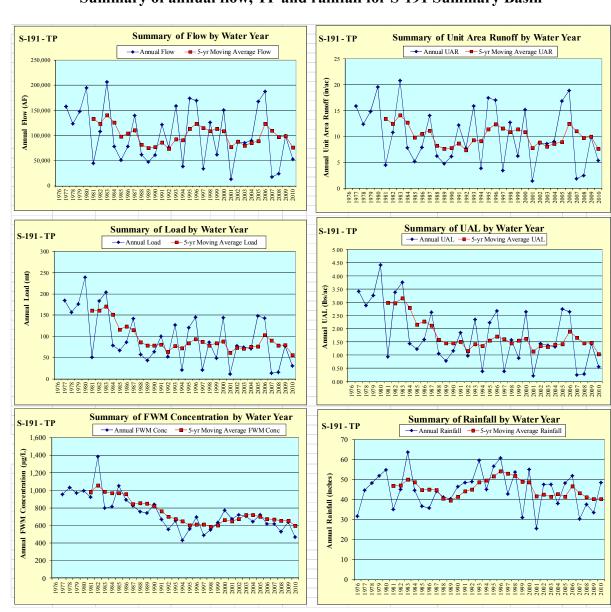
Summary of annual flow, TP and rainfall for S-133 Summary Basin

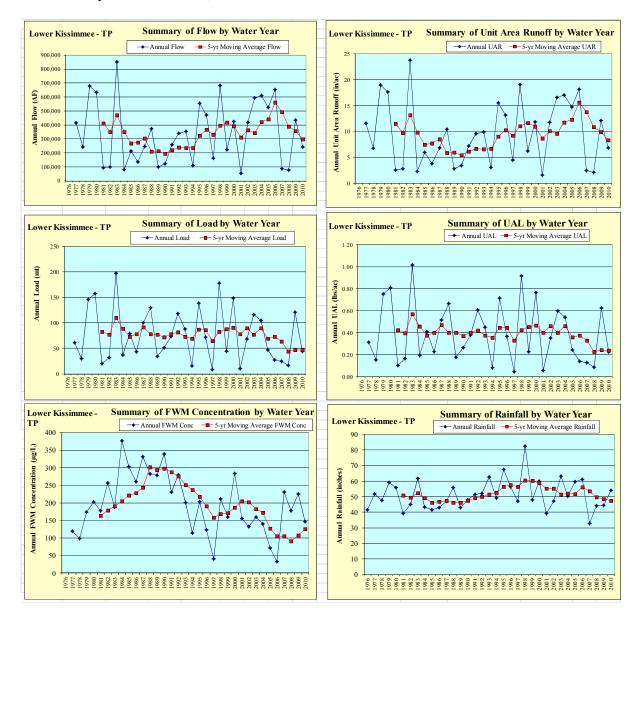

4846 4847

4843 4844



4849

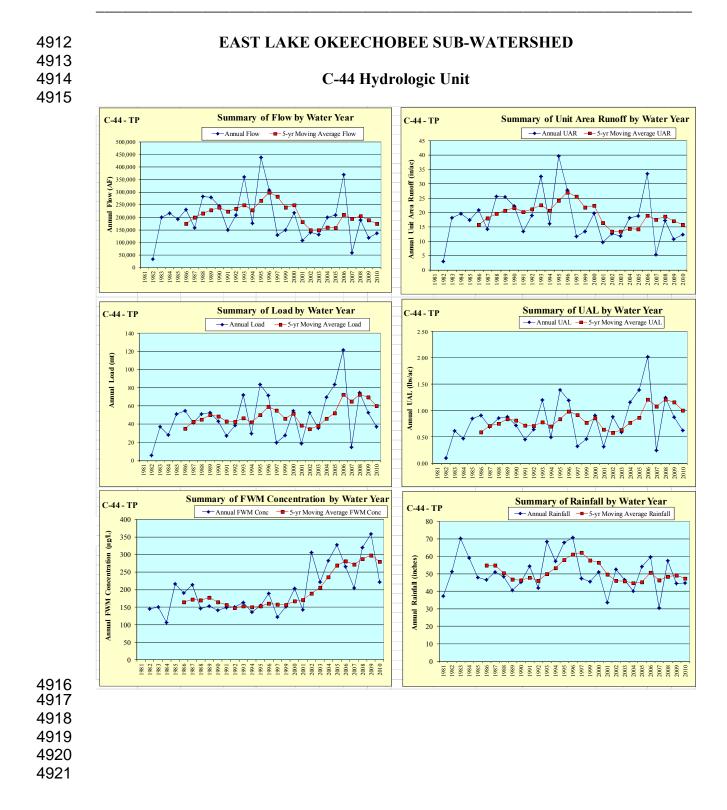




Summary of annual flow, TP and rainfall for S-191 Summary Basin

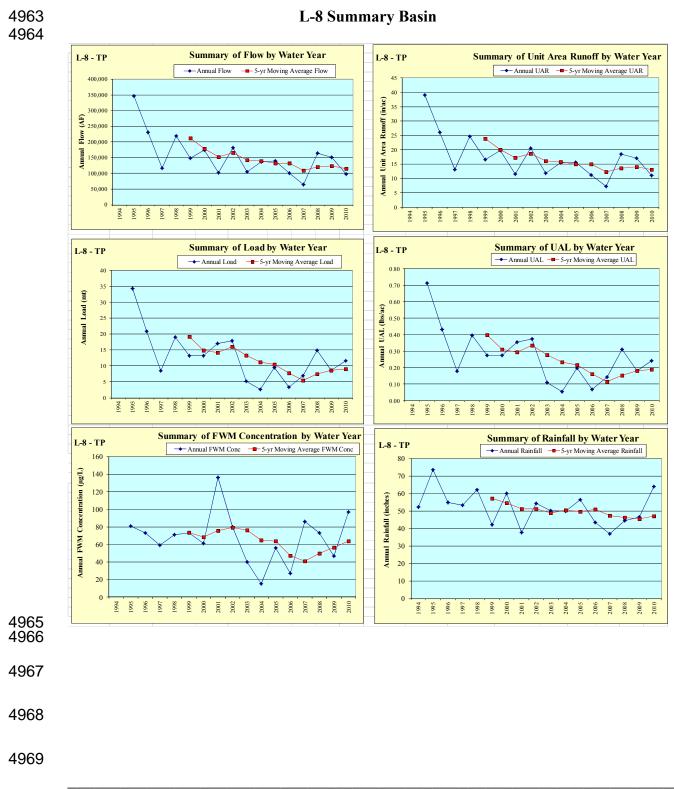
Summary of annual flow, TP and rainfall for the Lower Kissimmee Sub-watershed

4872 Calculation of Net Basin TP Loads for the Lower Kissimmee Sub-watershed


4873

4874 The Lower Kissimmee Sub-watershed receives surface inflows from the Upper Kissimmee 4875 Sub-watershed at S-65 and discharges to Lake Okeechobee at S-65E. Some of the inflows 4876 from the Upper Kissimmee are retained in the Lower Kissimmee Sub-watershed as a result of evapotranspiration, water supply withdrawals, groundwater recharge, increased storage, etc. 4877 The portion of the total inflow from S-65 that is "passed through" the Lower Kissimmee and 4878 4879 discharged to Lake Okeechobee is not considered in this evaluation. Only basin flows that are the result of local rainfall and runoff from the Lower Kissimmee Sub-watershed are 4880 evaluated in this analysis. (Note: Inflows from Lake Istokpoga via G-85 are limited to 4881 leakage through closed culvert stop logs and are considered insignificant.) Basin flows are 4882 4883 calculated on a daily basis as follows:

1000	eureuruteu on	
4884		
4885	I_{LK}	= Total Inflow to the Lower Kissimmee Sub-watershed
4886		$= Q_{S-65} = S-65$ discharge
4887	O_{LK}	= Total Outflow from the Lower Kissimmee Sub-watershed
4888		$= Q_{S-65E} = S-65E$ discharge
4889	PT_{LK}	= Pass-through flow
4890		= the portion of S-65 inflow that is passed through the Lower Kissimmee Sub-
4891		watershed
4892		= minimum (I _{LK} , O _{LK})
4893	B_{LK}	= net basin flow produced by local rainfall and runoff
4894		$= O_{LK} - PT_{LK}$
4895		
4896	TP loading f	rom the Lower Kissimmee Sub-watershed is the result of direct rainfall and
4897	runoff from	within the sub-watershed and does not include external TP loading from the
4898	Upper Kissin	nmee Sub-watershed. Lower Kissimmee Sub-watershed basin loading is
4899	calculated usi	ng the following equations.
4900		
4901	C _{S-65}	= S-65 TP concentration
4902	PTL_{LF}	x = pass through TP load = the portion of S-65 TP load that is passed through
4903		the Lower Kissimmee Sub-watershed
4904		$= PT_{LK} * C_{S-65}$
4905	C _{S-65E}	= S-65E TP concentration
4906	BL_{LK}	= net basin TP loads produced by local rainfall and runoff
4907		$= (Q_{S-65E} * C_{S-65E}) - PTL_{LK}$
4908		
4909	These calcula	ations were performed on a daily time-step and the results were summed to
4910	monthly and	annual totals.



4922	Calcula	ation of Net Basin TP Loads for the C-44 Hydrologic Unit
4923		
4924	C-44 Hydrologic U	nit Flows
4925	0	
4926	Qs-308In	= S-308 discharges from Lake Okeechobee to C-44
4927	Qs-308Out	= S-308 discharges C-44 to Lake Okeechobee
4928	Qs-80	= S-80 discharges from C-44 to St. Lucie Estuary
4929	I _{C-44}	= total inflow to C-44
4930		$= Q_{S-308In}$
4931	O _{C-44}	= total outflow from C-44
4932		$= Q_{S-308Out} + Q_{S-80}$
4933	PT _{C-44}	= pass-through flow for C-44
4934		$= \min(I_{C-44}, O_{C-44})$
4935	B _{C-44}	= net basin flow produced by local rainfall and runoff
4936		$= O_{C-44} - PT_{C-44}$
4937		
4938		
4939	C-44 Hydrologic U	nit Loads
4940	2 0	
4941	C _{In}	= total inflow concentration
4942	- 111	= total inflow load to C-44 / total inflow to C-44
4943		$= (Q_{S-308In} * C_{S-308In}) / I_{C-44}$
4944	PTL _{C-44}	= pass-through load for C-44
4945	1 1 L (-44	$= PT_{C-44} * C_{In}$
4946	C _{S-80}	= S-80 concentration
4947	C_{S-308}	= S-308 concentration
4948	OL _{C-44}	= total outflow load from C-44
	OL _{C-44}	
4949	DI	$= (Q_{S-80} * C_{S-80}) + (Q_{S-308Out} * C_{S-308})$
4950	BL_{C-44}	= net basin load produced by local rainfall and runoff
4951		$= OL_{C-44} - PTL_{C-44}$
4952	C .	
4953	Comments:	
4954		
4955		concentration at S-308 to Lake Okeechobee (C_{S-308}) should be the grab
4956	concentratio	ns at S-308C, as these reflect discharges from the C-44 into the lake.
4957	• However, th	e inflow concentrations at S-308 from Lake Okeechobee into the C-44
4958	are the autos	ampler concentrations at S308C based on meeting with Cheol Mo on
4959	August 27, 2	2010.
4960	č /	
4961		
4962		
-		

Calculation of Net Basin TP Loads for the L-8 Summary Basin

4971 A combination of stormwater runoff and water supply deliveries are discharged from the L-8 4972 Canal to multiple receiving waters: to Lake Okeechobee at C-10A, to the City of West Palm 4973 Beach's water catchment system at Control No. 2, to the EAA at S-5AW, to the WCA-1 at S-5AS, and to the C-51W Canal at S-5AE. The L-8 Summary Basin receives inflows from 4974 4975 Lake Okeechobee at C-10A, from WCA-1 at S-5AS, from the C-51W Canal at S-5AE, and 4976 from the West Palm Beach Canal in the EAA at S-5AW. Some of the inflows are retained in 4977 the basin as a result of evapotranspiration, water supply withdrawals, groundwater recharge, increased storage, etc. The portion of the total inflow that is "passed through" the L-8 4978 Summary Basin and discharged to adjacent waters is not considered basin flow in the 4979 4980 evaluation of historical data analyses for the purpose of developing performance measures. Only basin flows that are the result of local rainfall and runoff from the L-8 Summary Basin 4981 4982 are considered basin flow in the evaluation of historical data analyses. Following the 4983 standard District algorithm, L-8 Summary Basin flows were calculated on a daily basis by 4984 initially estimating the pass through volumes as follows: 4985

1000		
4986	I _{L-8}	= total inflow to the L-8 Summary Basin
4987		$= \text{sum} \left[Q_{\text{S-5AEIn}} + Q_{\text{S-5AWIn}} + Q_{\text{S-5ASIn}} + Q_{\text{C-10AIn}} \right]$
4988	Qs-5AEIn	= flow at structure S-5AE into the L-8 Summary Basin
4989	Qs-5AWIn	= flow at structure S-5AW into the L-8 Summary Basin
4990	Qs-5ASIn	= flow at structure S-5AS into the L-8 Summary Basin
4991	Q _{C-10AIn}	= flow at structure C-10A into the L-8 Summary Basin
4992		
4993	O_{L-8}	= total outflow from the L-8 Summary Basin
4994		$= sum \left[Q_{S-5AEOut} + Q_{S-5AWOut} + Q_{S-5ASOut} + Q_{C-10AOut} + Q_{WPB2} \right]$
4995	Qs-5AEOut	= flow at structure S-5AE out of the L-8 Summary Basin
4996	Qs-5AWOut	= flow at structure S-5AW out of the L-8 Summary Basin
4997	Qs-5ASOut	= flow at structure S-5AS out of the L-8 Summary Basin
4998	Q _{C-10AOut}	= flow at structure C-10A out of the L-8 Summary Basin
4999	Q _{WPB2}	= flow at City of West Palm Beach pump No. 2
5000		
5001	PT_{L-8}	= pass-through flow
5002		= minimum [I _{L-8} , O _{L-8}]
5003	B_{L-8}	= net basin flow produced by local rainfall and runoff
5004		$= O_{L-8} - PT_{L-8}$
5005		
5000	TT1 1 1 /	

These calculations were performed on a daily basis and the results were summed to monthly
and annual totals. Daily flow and TP data were provided by the District. Flow data for the
City of West Palm Beach's Control No. 2 was only available beginning May 1994, hence the
historical data analysis for the L-8 Summary Basin began at this point in time.

Net Basin TP loading from the L-8 Summary Basin is the result of direct rainfall and runoff
from within the summary basin and does not include external TP loading from surrounding
basins. Following the standard District algorithm for calculating pass-through loads, the L-8
Summary Basin loading was calculated on a daily basis for each boundary structure using the
following algorithms.

5015		
5016 5017	PTL _{L-8}	= PT _{L-8} * cumulative flow-weighted mean inflow concentration measured at S-5AE, S-5AW, S-5AS and C-10A
	C	
5018	C _{L-8In}	$= \left[\left(\mathbf{Q}_{\text{S5ASIn}} * \mathbf{C}_{\text{S5ASIn}} + \mathbf{Q}_{\text{S5AEIn}} * \mathbf{C}_{\text{S5AEIn}} + \mathbf{Q}_{\text{S5AWIn}} * \mathbf{C}_{\text{S5AWIn}} + \right] \right]$
5019	DET	$Q_{C10AIn} * C_{C10AIn}) / I_{L-8}]$
5020	PTL _{L-8}	$= \mathrm{PT}_{\mathrm{L-8}} * \mathrm{C}_{\mathrm{L-8In}}$
5021		
5022	C _{S5ASIn}	= S-5AS TP inflow concentration
5023	C _{S5AEIn}	= S-5AE TP inflow concentration
5024	C _{S5AWIn}	= S-5AW TP inflow concentration
5025	C _{C10AIn}	= C-10A TP inflow concentration
5026		
5027	O_{L-8}	= total outflow load from the L-8 Summary Basin
5028		$= Q_{S5ASOut} * C_{S5ASOut} + Q_{S5AEOut} * C_{S5AEOut} + Q_{S5AWOut} * C_{S5AWOut} +$
5029		$Q_{C10AOut} * C_{C10AOut} + Q_{WPB2} * C_{WPB2}$
5030	C _{S5ASOut}	= S-5AS TP outflow concentration
5031	C _{S5AEOut}	= S-5AE TP outflow concentration
5032	C _{S5AWOut}	= S-5AW TP outflow concentration
5033	C _{C10AIOut}	= C-10A TP outflow concentration
5034	C_{WPB2}	= estimated concentration at City of West Palm Beach pump No. 2
5035		= estimated as the cumulative flow-weighted mean inflow
5036		concentration measured at S-5AE, S-5AW, S-5AS and C-10A
5037		$= C_{L-8In}$
5038	BL_{L-8}	= net basin TP loads produced by local rainfall and runoff
5039	LU	$= OL_{1-8} - PT_{1-8}$
5040		- 20 20
0010		

5041 These calculations were performed on a daily time-step and the results were summed to monthly and annual total loads.

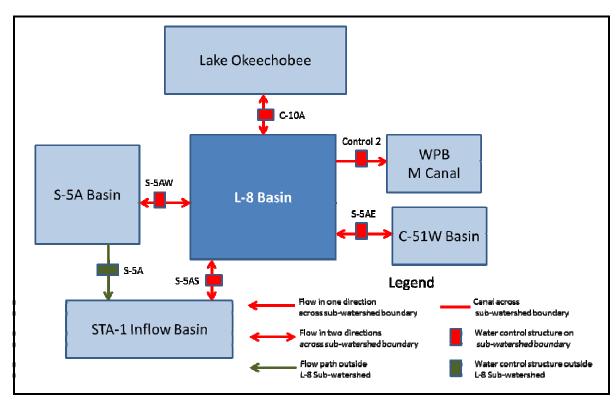
5043

5045	Algorithm for Estimating TP Loads Discharged from the Southern L-8 Canal
5046	Structures (S-5AW, S-5AS, S-5AE): Deriving a Common Daily Time Series of TP
5047	Concentrations
5048	
5049	1. Using the District's LOAD Program for the period WY1995-2011, daily, monthly
5050	and annual flow weighted mean (FWM) TP concentrations for discharges through
5051	the S-5AW, S-5AS and S-5 AE^{23} exhibited considerable heterogeneity, with annual
5052	coefficients of variation (standard deviation / mean) ranging up to 1.02 (see Table
5053	A-1 and Figure A-1).
5054	
5055	2. For structures located as close together as these three, it was expected that there
5056	would be a closer range of FWM concentrations ²⁴ . However, the LOAD Program
5057	looks only at the specific station in question in establishing an appropriate
5058	concentration to apply to the flow, and does not look at adjacent stations. As a
5059 5060	result, TP concentrations from grab samples were applied to flow values up to 2,229
5060 5061	days (i.e., more than six years) distant from the date of flow in estimating load (see Table A-2).
5062	Table A-2).
5062 5063	3. An alternative algorithm was investigated to reduce the heterogeneity between the
5064	concentrations at these structures, utilizing a common concentration time series for
5065	the southern terminus of the L-8 Canal. The time series was derived according to the
5066	following procedure.
5067	a. TP concentrations collected on days when flow occurred at each structure,
5068	with the following criteria
5069	i. S-5AW:
5070	1. Priority was given to grab samples collected at S-5AW on days
5071	with flow.
5072	2. If a grab sample was not collected at S-5AW on the day with
5073	flow, a concurrent grab sample at S-5A was used if the flow at
5074	S-5A was less than or equal to the flow from S-5AW, in order
5075	to minimize the influence of EAA water quality on the S-5A
5076	sample.

²³ Discharge through S-5AW from east to west (to the S-5A Basin); discharge through S-5AS from north to south (to the STA 1 Inflow and Distribution Works); discharge through S-5AE from west to east (to the C-51 West Basin).

²⁴ A recent decision by the District to eliminate sampling at S-5AS and S-5AW and use samples taken at S-5AE was based on analyses that bear out this expectation.

5078


5079

5080 5081

5082

ii. S-5AE:

1. Within a 14-day window, priority was given to autosampler composite concentrations over grab sample concentration, consistent with the LOAD Program algorithm using the 14-day window option.

Figure A-1. Flow diagram for the L-8 Summary Basin

- b. A single daily time series was compiled from the concentrations at the three structures.
 - i. If values were available at all three stations, an arithmetic average was calculated for that day (note: this concurrent sample collection never occurred).
 - ii. If values were available for only two structures, an arithmetic average was calculated for that day (note: this occurred 16 days during of the period of record)
 - iii. If only one value was available, that value was used for that day (note: this occurred 758 days during the period of record).

5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111	 iv. Concentrations on days prior to the first value were set to the first value. v. Concentrations on days after the last value were set to the last value. vi. Concentrations for days with no value were estimated from linear interpolation. c. The resulting time series was then applied to the daily flow for each structure to calculate a daily TP load. d. The heterogeneity of daily, monthly and annual FWM TP concentrations was reduced in 13 of the 17 years of record (Table A-3 and Figure A-2). e. The net effect was to decrease the estimated total TP loads discharged out of the L-8 Canal (see Table A-4). Ninety-six (96) percent of the net change in TP loads occurred in WY1995, with most of that (97%) attributed to a revision in the TP loads estimated leaving through S-5AW. i. S-5AW: a net reduction of 28.848 mt (1.697 mt/yr) ii. S-5AE: a net <i>increase</i> of 3.593 mt (0.211 mt/yr)
5112 5113 5114 5115 5116 5117 5118 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131	estimating TP loads from these three structures. Calculations are contained in the spreadsheet: "L-8 Southern Concentrations – 1 5 2012.xlsx" and "L-8 Basin Flows and Loads – 1 5 2012.xlsx"

Total

1.02

0.80

0.65

0.34

0.54

0.23

0.21

0.53

0.04

0.13

0.88

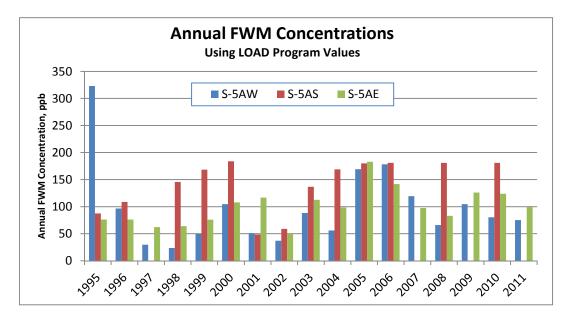
0.56

0.88

0.39

0.89

5132 Table A-1. Annual FWM TP Concentrations at the Southern L-8 Canal Structures.

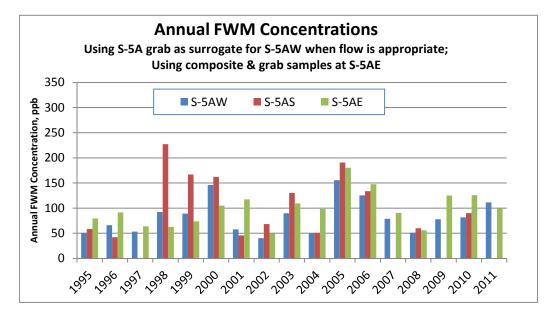

Coef. Of Water S-5AW S-5AS S-5AE Total Conc, ppb Conc, ppb Conc, ppb Variation Year Conc, ppb 0.87 0.18

5134 5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151

5152 Figure A-1. Annual FWM Concentrations Using Standard LOAD Program Algorithm.

Table A-2. Summary Statistics for Southern L-8 Canal Structures During WY1995-2011.

Station	Days with Flow days	Days with Flow % of POR	Number of grab samples	# of grab samples on days with flow	% of days with flow that have grab samples	% of grab samples on days with flow	Maximum # of days between grab samples on days with flow
S-5AW	729	12%	93	29	4%	31%	602
S-5AS	309	5%	166	6	2%	4%	2294
S-5AE	3669	59%	425	293	8%	69%	532



5174 Table A-3. Annual FWM TP Concentrations at the Southern L-8 Canal Structures, 5175 Using Common Time Series of Concentrations. 5176

Water	S-5AW	S-5AS	S-5AE	Total	Coef. Of
Year	Conc, ppb	Conc, ppb	Conc, ppb	Conc, ppb	Variation
1995	51	59	79	70	0.24
1996	66	42	91	81	0.37
1997	53	0	64	62	0.88
1998	92	227	63	66	0.69
1999	89	167	74	84	0.46
2000	146	162	105	121	0.21
2001	58	46	117	76	0.52
2002	40	68	50	51	0.27
2003	90	130	109	109	0.18
2004	50	51	98	97	0.42
2005	155	191	180	177	0.10
2006	125	134	148	147	0.08
2007	79	0	90	88	0.87
2008	51	60	56	52	0.08
2009	78	0	125	122	0.93
2010	82	90	126	124	0.24
2011	111	0	99	100	0.87
Total	78	107	104	101	

Figure A-2. Annual FWM Concentrations Using Alternative Algorithm.

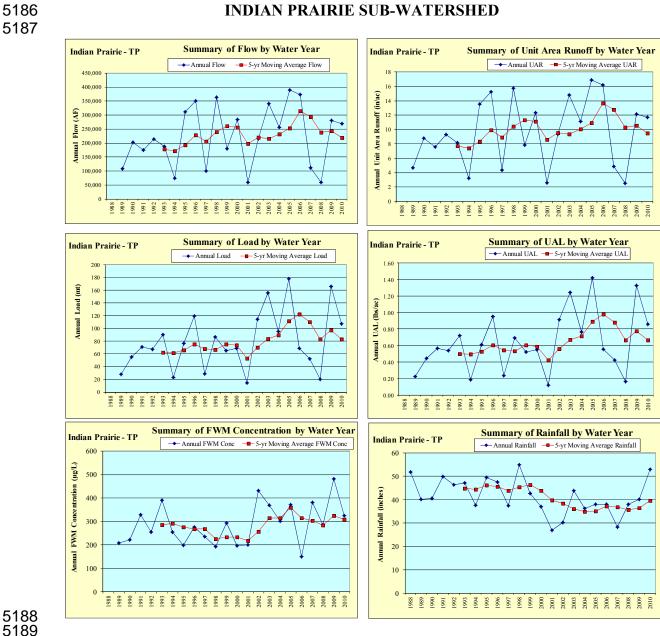
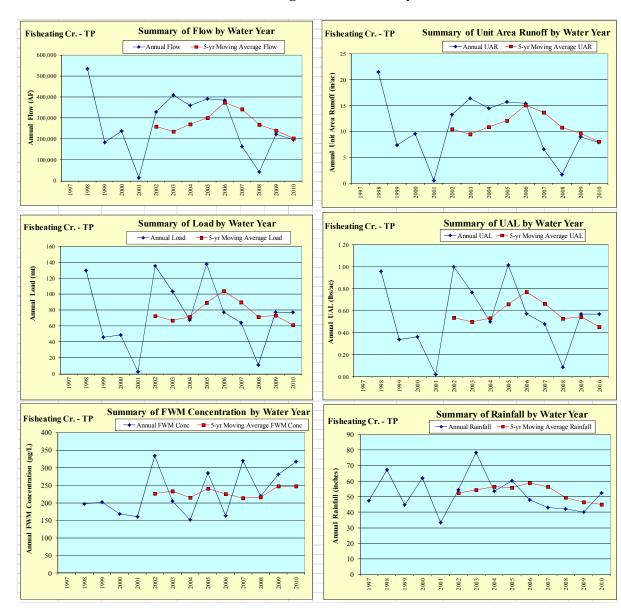


Table A-4. Comparison of Annual TP Loads.

		Orig	ginal		Using	a Composite	e Daily Time	Series
Water	S-5AW S-5AS S-5AE		Total	S-5AW	S-5AS	S-5AE	Total	
Year	Load, kg	Load, kg	Load, kg	Load, kg	Load, kg	Load, kg	Load, kg	Load, kg
1995	32,759	5,926	21,703	60,388	5,141	4,121	22,526	31,789
1996	12,489	1,402	19,142	33,033	8,520	541	22,858	31,919
1997	721	0	5,879	6,600	1,293	0	6,037	7,330
1998	403	308	14,676	15,386	1,566	481	14,383	16,429
1999	858	2,709	10,586	14,153	1,546	2,645	10,249	14,441
2000	5,120	7,889	20,906	33,915	7,145	6,955	20,364	34,464
2001	1,354	585	2,340	4,280	1,533	549	2,353	4,434
2002	475	888	3,487	4,850	517	1,027	3,451	4,996
2003	1,777	1,529	27,187	30,493	1,803	1,451	26,399	29,653
2004	371	1,096	31,242	32,709	331	329	31,237	31,897
2005	6,748	4,301	35,118	46,167	6,190	4,557	34,574	45,321
2006	256	1,344	40,925	42,525	180	993	42,579	43,751
2007	992	0	3,113	4,105	652	0	2,889	3,541
2008	3,250	197	256	3,703	2,518	65	172	2,755
2009	1,116	0	18,901	20,018	832	0	18,694	19,525
2010	533	0	21,714	22,247	541	0	21,993	22,534
2011	137	0	14,491	14,628	204	0	14,501	14,705
Total	69,359	28,174	291,666	389,199	40,511	23,714	295,259	359,484
Average	4,080	1,657	17,157	22,894	2,383	1,395	17,368	21,146
Change from Original				Total	-28,848	-4,460	3,593	-29,715
	chunge ji	on onginar		Average	-1,697	-262	211	-1,748
Da	Percent Change from Original				-42%	-16%	1%	-8%
F	creant chung	ie ji olii oliyi	iiui	Average	-42%	-16%	1%	-8%

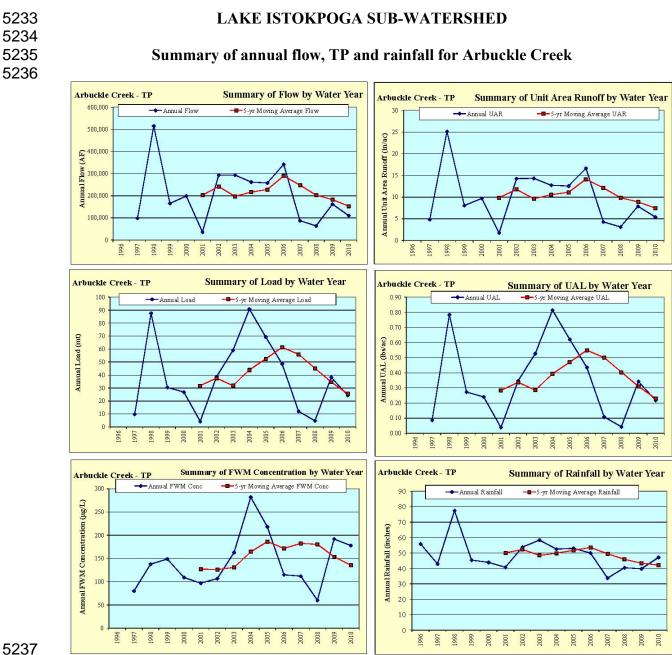
INDIAN PRAIRIE SUB-WATERSHED

5188 5189 5190


5191 5192	Calcu	llation of Net Basin TP Loads for the Indian Prairie Sub-watershed
5192	I _{IP}	= total inflow to the Indian Prairie Sub-watershed
5194	TIP	$= Q_{S-68}$
5195	Q _{S68}	= flow at S-68
5196	Q \$68	now at 5-00
5197	O_{IP}	= total outflow from the Indian Prairie Sub-watershed
5198	Olb	$= Q_{S131} + Q_{S71} + Q_{S72} + Q_{S129} + Q_{S127} + Q_{S84} + Q_{LCanal}$
5199	Q _{\$131}	= flow at S-131
5200	QS131 QS71	= flow at S-131
5200	Q_{S72}	= flow at S-71 $= flow at S-72$
5202	Q_{S129}	= flow at $S^{-1}2^{25}$
5202	Q_{S129} Q_{S127}	$= \text{flow at } \text{S}^{-127}$
5203	Q_{S127} Q_{S84}	= flow at S-84
5205		$_{1}$ = total flow at L-59E, L-59W, L-60E, L-60W, L-61E, and L-61W
5205	Q LCanal	= total now at L -55 L , L -55 W , L -60 L , L -60 W , L -61 L , and L -61 W
5200	PT_{IP}	= pass-through flow
5208	I I IP	$= \text{minimum} (I_{IP}, O_{IP})$
5208	D_	= net basin flow produced by local rainfall and runoff
5209	B_{IP}	$= O_{IP} - PT_{IP}$
5210		
5212	OL _{IP}	= total outflow TP load from the Indian Prairie Sub-watershed
5212	OLIP	$= Q_{S131} * C_{S131} + Q_{S71} * C_{S71} + Q_{S72} * C_{S72} + Q_{S129} * C_{S129} +$
5213		
5214	C	$Q_{S127} * C_{S127} + Q_{S84} * C_{S84} + Q_{LCanal} * C_{LCanal}$ = TP concentration at S-131
5215	C_{S131}	= TP concentration at S-151 = TP concentration at S-71
	C_{S71}	
5217	C _{S72}	= TP concentration at S-72
5218 5210	C_{S129}	= TP concentration at S-129
5219	C_{S127}	= TP concentration at S-127 = TP concentration at S 24
5220	C_{S84}	= TP concentration at S-84
5221	חדו	- mage through TD load
5222	PILIP	= pass through TP load
5223	C	$= PT_{IP} * C_{S68}$
5224	C_{S68}	= TP concentration at S-68
5225	ы	
5226	BL_{IP}	= net basin load produced by local rainfall and runoff
5227		$= OL_{IP} - PTL_{IP}$
5228		

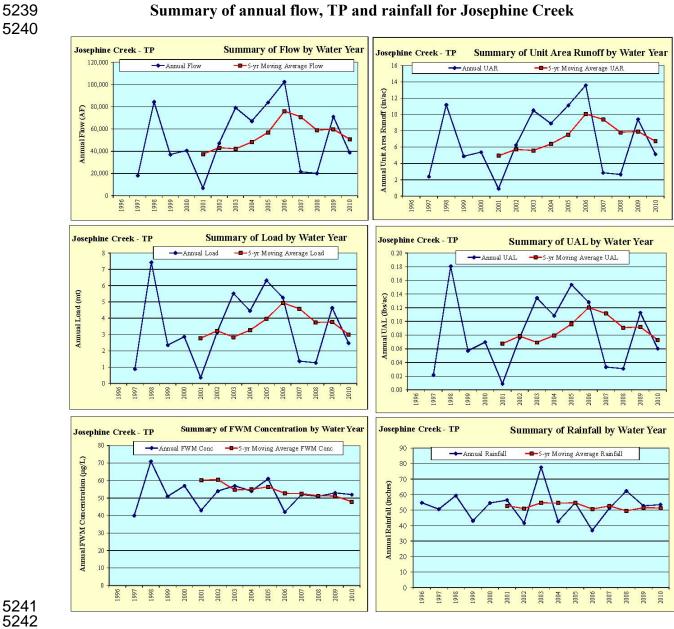
²⁵ After a review of the S-129 spillway data, it was determined that the negative flows were not reliable, and therefore, they were omitted from the analyses.

5230

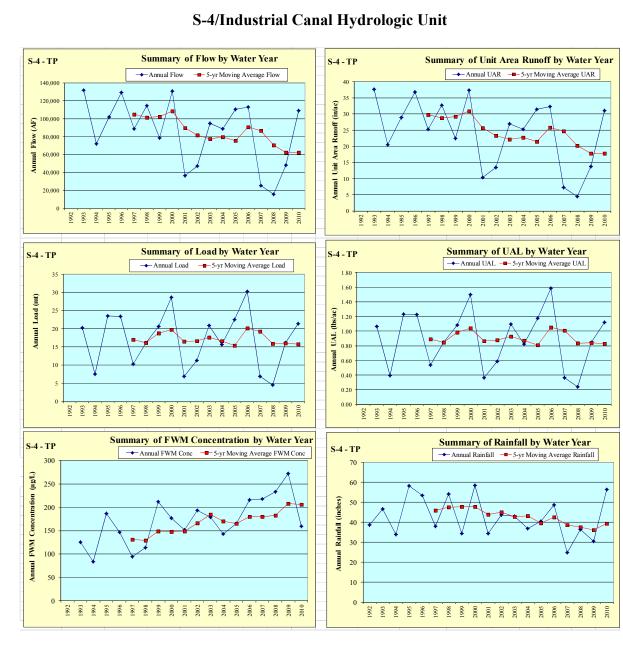


Fisheating Creek Summary Basin

5231 5232



5237 5238



Summary of annual flow, TP and rainfall for Josephine Creek

WEST CALOOSAHATCHEE SUB-WATERSHED

5247 5248 5249

5271

5272 5273

5274

5278

5250 Calculation of Net Basin TP Loads for the S-4/Industrial Canal Hydrologic Unit

5252 The S-4/Industrial Canal Hydrologic Unit receives inflows from Lake Okeechobee, the East 5253 Caloosahatchee Hydrologic Unit, and from Unit 5 of the South Florida Conservancy District 5254 (EPD-07 of the SFCD). The S-4/Industrial Canal Hydrologic Unit discharges to Lake Okeechobee and the East Caloosahatchee Hydrologic Unit. Some or all of the total inflows 5255 to the S-4/Industrial Canal Hydrologic Unit may be retained in the basin as a result of 5256 meeting agricultural and urban water supply demands, evapotranspiration, groundwater 5257 infiltration, or increasing internal storage. Pass-through flows and loads are the portion of 5258 the total inflows that are discharged from the hydrologic unit. Because S-169 controls flow 5259 5260 between the S-4 Sub-basin and the Industrial Canal Sub-basin, flow through S-169 must be 5261 considered in the calculation of the hydrologic unit's pass-through flows and loads. Failure to do so will result in overestimates of pass through, e.g., on days when S-169 is closed, 5262 inflows to the hydrologic unit through S-310 cannot physically reach S-235 and therefore, 5263 5264 cannot contribute to pass through at that structure. Basin flows and loads result from rainfall and runoff from the hydrologic unit and do not include pass-through flows and loads. 5265 5266

5267 In order to properly account for the S-169 operations, it's necessary to make a minor modification to the standard algorithm for calculating pass-through flows and loads. Pass-5268 through flows are calculated using applicable algorithms for four operational conditions: 5269 5270

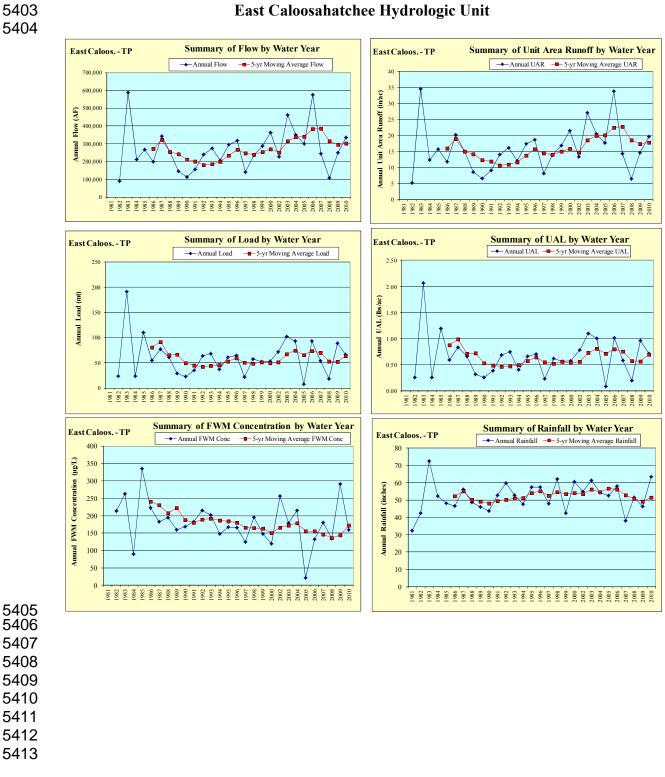
- 1. On days when the total inflows or total outflows are zero;
- 2. On days when the total inflows and total outflows are nonzero and S-169 is closed;
- 3. On days when the total inflows and total outflows are nonzero and S-169 is discharging from the Industrial Canal Sub-basin to the S-4 Sub-basin (positive flow values in DBHYDRO);
- 5275 4. On days when the total inflows and total outflows are nonzero and S-169 is 5276 discharging from the S-4 Sub-basin to the Industrial Canal Sub-basin (negative flow values in DBHYDRO); 5277

5279 The following equations describe how pass-through flows are calculated for each of these 5280 conditions.

5281	1. If
5282	Total Inflow = $Q_{S310In} + Q_{EPD07} + Q_{S235In} = 0$
5283	or
5284	$Total Outflow = Q_{S310Out} + Q_{S4} + Q_{S235Out} = 0$
5285	then
5286	$PT_{S4IC} = pass-through flow = 0$
5287	where Q_{S310In} = Discharges at S-310 from Lake Okeechobee to the Industrial Canal
5288	$Q_{S310Out}$ = Discharges at S-310 from the Industrial Canal to Lake Okeechobee
5289	Q_{S235In} = Discharges at S-235 from the East Caloosahatchee Hydrologic Unit to the
5290	S-4 Sub-basin

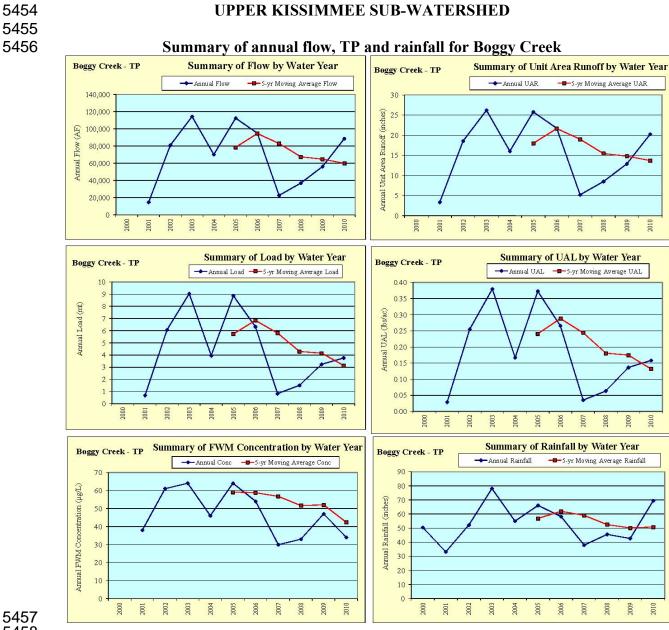
5001		- Discharges at S 225 from the S 4 Sect having to the East Only and 1 (1)
5291 5202		$Q_{S235Out}$ = Discharges at S-235 from the S-4 Sub-basin to the East Caloosahatchee
5292 5293		Hydrologic Unit
5293 5294		Q_{EPD07} = Discharges at pump station EPD-07 from SFCD to the Industrial Canal
5294 5295		Q_{S4} = Discharges at S-4 from the S-4 Sub-basin to Lake Okeechobee
5295 5296		PT_{S4IC} = Portion of the total inflow to the S-4/Industrial Canal Hydrologic Unit that is
		discharged from the hydrologic unit
5297		Notes: Q_{S4} is unidirectional out of the hydrologic unit
5298	ſ	Q_{EPD07} is unidirectional into the hydrologic unit
5299 5200	2.	If Total Inflow > 0
5300		Total Inflow > 0
5301		and
5302		Total Outflow > 0
5303		and
5304		$Q_{S169West} = 0$
5305		and
5306		$Q_{S169East} = 0$
5307		then
5308		$PT_{S4} = \min(Q_{S235In}, Q_{S4})$
5309		$PT_{IC} = \min(Q_{EPD07}, Q_{S310Out})$
5310		$PT_{S4IC} = PT_{S4} + PT_{IC}$
5311		where $Q_{S169West}$ = Discharges at S-169 from the Industrial Canal to the S-4 Sub-basin
5312		$Q_{S169East}$ = Discharges at S-169 from the S-4 Sub-basin to the Industrial Canal
5313		Sub-basin
5314		PT_{S4} = Portion of the total inflow to the S-4 Sub-basin that is discharged from the
5315		Sub-basin
5316		PT_{IC} = Portion of the total inflow to the Industrial Canal Sub-basin that is discharged
5317	2	from the Sub-basin
5318	3.	If The LL Change of
5319		Total Inflow > 0
5320		and
5321		Total Outflow > 0
5322		and
5323		$Q_{S169West} > 0$
5324		then
5325		$PT_{IC} = minimum (Q_{S310In} + Q_{EPD07}, Q_{S310Out})$
5326		$PT_{S4} = minimum (Q_{S235In} + minimum (Q_{S169West}, (Q_{S310In} + Q_{EPD07} - PT_{IC})), (Q_{S4} + Q_{S4})$
5327		Q _{S235Out}))
5328		$PT_{S4IC} = PT_{S4} + PT_{IC}$
5329	4.	If The IV Card of
5330		Total Inflow > 0
5331		and

5332	Total Outflow > 0
5333	and
5334	$Q_{S169East} > 0$
5335	then
5336	$PT_{S4} = minimum (Q_{S235In}, Q_{S4} + Q_{S235Out})$
5337	$PT_{IC} = minimum (Q_{S310In} + Q_{EPD07} + minimum (Q_{S169East}, (Q_{S235In} - PT_{S4}), Q_{S310Out})$
5338	$PT_{S4IC} = PT_{S4} + PT_{IC}$
5339	
5340	For all conditions,
5341	B_{S4IC} = net basin flow produced by local rainfall and runoff
5342	$= O_{S4IC} - PT_{S4IC}$
5343	
5344	All calculations were performed on a daily time step and then summed to monthly and
5345	annual totals.
5346	
5347	Pass through TP loads are calculated using the appropriate hydrologic unit flow weighted
5348	inflow concentrations, based on the applicable algorithms for the following three S-169 flow
5349	conditions:
5350	1. On days when S-169 is closed;
5351	2. On days when S-169 discharges to the west, from the Industrial Canal to the S-4
5352	Sub-basin; and
5353	3. On days when S-169 discharges to the east, from the S-4 Sub-basin to the
5354	Industrial Canal.
5355	
5356	The following algorithms are used for the three conditions described above:
5357	1. If
5358	$Q_{S169West} = Q_{S169East} = 0$
5359	Then
5360	$PTL_{IC} = PT_{IC} * C_{EPD07}$
5361	$PTL_{S4} = PT_{S4} * C_{S235In}$
5362	$PTL_{S4IC} = PTL_{IC} + PTL_{S4}$
5363	where PTL_{IC} = Portion of the total inflow load to the Industrial Canal Sub-basin that
5364	is discharged from the Sub-basin
5365	C_{EPD07} = Concentration of discharges at pump station EPD-07
5366	PTL_{S4} = Portion of the total inflow load to the S-4 Sub-basin that is discharged from
5367	the Sub-basin
5368	C_{S235In} = Concentration of S-235 discharges from the East Caloosahatchee Hydrologic
5369	Unit to the S-4 Sub-basin
5370 5271	PTL_{S4IC} = Portion of the total inflow load to the S-4/Industrial Canal Hydrologic Unit
5371 5272	that is discharged from the Hydrologic Unit
5372	2. If

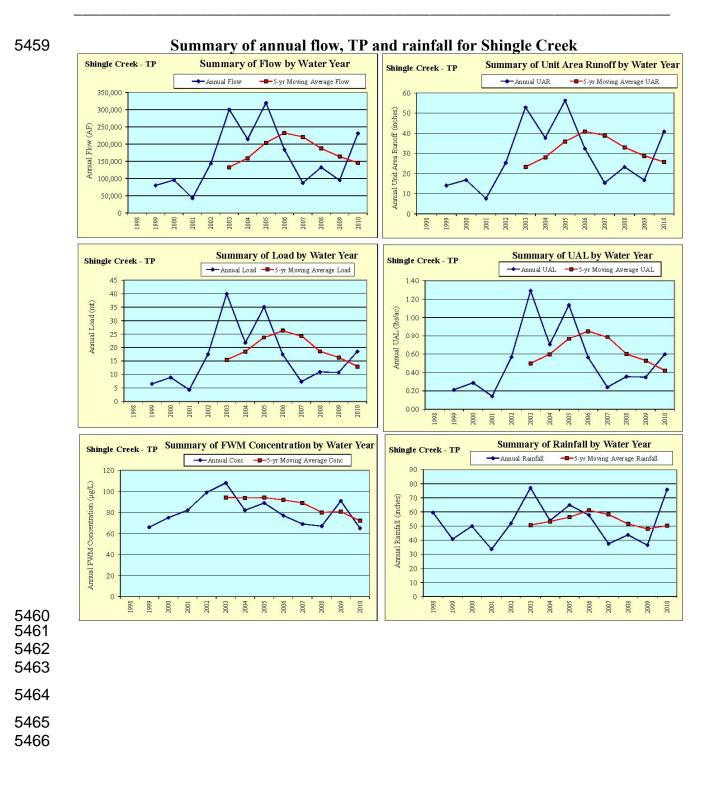


5373	$Q_{S169West} > 0$
5374	Then
5375	$PTL_{IC} = PT_{IC} * C_{EPD07}$
5376	$PTC_{S4} = (Q_{S235In} * C_{S235In} + Q_{EPD07} * C_{EPD07} + Q_{S310In} * C_{S310In}) / (Q_{S235In} + Q_{EPD07} + Q_{S310In})$
5377	$PTL_{S4} = PT_{S4} * PTC_{S4}$
5378	$PTL_{S4IC} = PTL_{IC} + PTL_{S4}$
5379	where PTC_{s4} = Flow weighted inflow concentration of S-4 Sub-basin
5380	C_{S235In} = Concentration of flows at S-235 from East Caloosahatchee Hydrologic Unit
5381	to the S-4 Sub-basin
5382	C_{EPDO7} = Concentration discharged at pump station EPD-07 into the Industrial Canal
5383	Sub-basin
5384	C_{S310In} = Concentration discharged at S-310 from Lake Okeechobee into the
5385	Industrial Canal Sub-basin
5386	3. If
5387	$Q_{S169East} > 0$
5388	Then
5389	$PTL_{IC} = PT_{IC} * (Q_{S235In} * C_{S235In} + Q_{EPD07} * C_{EPD07}) / (Q_{S235In} + Q_{EPD07})$
5390	$PTL_{S4} = PT_{S4} * C_{S235In}$
5391	$PTL_{S4IC} = PTL_{IC} + PTL_{S4}$
5392	
5393	Once the pass-through loads are calculated, the hydrologic unit's net basin loads are
5394	calculated by subtracting pass-through loads from the total outflow loads as follows:
5395	
5396	BL_{S4IC} = net basin load produced by local rainfall and runoff
5397	$= OL_{S4IC} - PTL_{S4IC}$
5398	$OL_{S4IC} = OL_{S235} + OL_{S4} + OL_{S3100ut}$
5399	OL_{S235} = load discharged at S-235 to the East Caloosahatchee Hydrologic
5400	Unit
5401	OL_{S4} = load discharged at S-4 to Lake Okeechobee
5402	$OL_{S310Out}$ = load discharged at S-310 to Lake Okeechobee

East Caloosahatchee Hydrologic Unit



5414	Calculation of	Net Basin TP Loads for the East Caloosahatchee Hydrologic Unit
5415	Enat Calo on ale atole	a III. India la ria II. 14 El anna
5416	East Caloosanaiche	ee Hydrologic Unit Flows
5417	т	- total influences the Freet Cale and states - Under lasis Unit
5418	I _{EC}	= total inflow to the East Caloosahatchee Hydrologic Unit
5419	0077	$= Q_{S77In} + Q_{S235In}$
5420	$QS77_{In}$	= S-77 discharges from Lake Okeechobee into C-43
5421	QS235 _{In}	= $S-235$ discharges from the L-D3 Canal into C-43
5422	0	
5423	O_{EC}	= total outflow from the East Caloosahatchee Hydrologic Unit
5424		$= Q_{S77Out} + Q_{S235Out} + Q_{S78}$
5425	Q _{S77Out}	= S-77 discharges from C-43 into Lake Okeechobee
5426	Q _{S235Out}	= S-235 discharges from C-43 into the L-D3 Canal
5427	Q_{S78}	= S-78 discharges
5428		
5429	PT_{EC}	= pass through flow
5430		= minimum (I _{EC} , O _{EC})
5431		
5432	\mathbf{B}_{EC}	= net basin flow produced by local rainfall and runoff
5433		$= O_{EC} - PT_{EC}$
5434		
5435	East Caloosahatche	ee Hydrologic Unit Loads
5436		
5437	OL_{EC}	= total outflow TP load
5438		$= Q_{S770ut} * C_{S770ut} + Q_{S2350ut} * C_{S2350ut} + Q_{S78} * C_{S78}$
5439	C _{S77Out}	= S-77 TP outflow concentration
5440	C _{S235Out}	= S-235 TP outflow concentration
5441	C _{S78}	= S-78 TP concentration
5442	570	
	PTL _{FC}	= pass through TP load
		· · · ·
	Cın	
	- 111	=
		$(\sqrt{37/10})^{-1}$
	BLEC	= net basin load produced by local rainfall and runoff
		1 2
	Cozzi	
	C 8235In	5-255 II milow concentration
5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453	PTL _{EC} C _{In} BL _{EC} C _{S77In} C _{S235In}	= pass through TP load = $PT_{EC} * C_{In}$ = cumulative flow weighted mean inflow concentration = ($Q_{S77In} * C_{S77In} + Q_{S235In} * C_{S235In}$) / I_{EC} = net basin load produced by local rainfall and runoff = $OL_{EC} - PTL_{EC}$ = S-77 TP inflow concentration = S-235 TP inflow concentration



5467	APPENDIX B – DERIVATION OF EQUATIONS FOR THE
5468	PERFORMANCE MEASURE METHODOLOGIES OF THE
5469	LAKE OKEECHOBEE WATERSHED
5470	
5471	TAYLOR CREEK-NUBBIN SLOUGH SUB-WATERSHED
5472	
5473	S-133 Summary Basin
5474	
5475	Following the procedures described in Section 2.6, the annual load discharged from S-133
5476	was expressed as a function of the variability of the annual rainfall. Using a zero percent
5477	load reduction, prediction equations for the annual TP load and annual upper confidence limit
5478	above the prediction were derived using this regression equation. The resulting prediction
5479	equation for the annual load was
5480	
5481	annual load prediction (mt) = $L = a + b_1X + b_2P + b_3C$
5482	
5483	Where $L = 12$ -month load (mt),
5484 5485	a - the intereent of the regression line
5485 5486	a = the intercept of the regression line $b_1 =$ the regression coefficient for X
5480 5487	b_1 = the regression coefficient for P b_2 = the regression coefficient for P
5488	b_2 = the regression coefficient for C
5489	X = the natural logarithm of the 12-month total rainfall (inches)
5490	P = natural logarithm of the previous year's rainfall, i.e., previous year's X
5491	C = the coefficient of variation calculated from 12 monthly rainfall totals
5492	e die element of variation calculated from 12 monthly faillant totals
5493	The predictors X, P and C are calculated from the first two moments (m ₁ and m ₂) of the 12
5494	monthly rainfall totals for the Water Year:
5495	r_i = monthly rainfall, for i=1 to 12 months of the Evaluation Year
5496	$m_1 = Sum[r_i] / 12$
5497	$m_2 = Sum [r_i - m_1]^2 / 12$
5498	$X = \ln(12 m_1)$
5499	$C = [(12/11) m_2]^{0.5} / m_1$
5500	
5501	Applying the coefficients derived using the ordinary least squares method yields the
5501 5502	Applying the coefficients derived using the ordinary least squares method yields the following prediction for the annual load
5501	

The coefficient of determination (R^2) for the resulting equation was 0.791, with a standard 5506 5507 error of regression of 5.181 mt. The standard error of regression was approximately 50 5508 percent of the Base Period mean annual load. The coefficients of the regression line were 5509 significantly different from zero at the 90 percent confidence level, with p-values less than 10 percent for the coefficients b_1 , b_2 and b_3 . 5510

5511

5518

5520

5523

5524

5525

5512 Consistent with Chapter 40E-63 F.A.C., the upper confidence limit for the predicted annual load was derived as the upper 90 percent confidence limit above the prediction, with an 5513 associated theoretical Type I error (i.e., false positive) rate of 10 percent²⁶. In deriving the 5514 upper 90 percent upper confidence limit on the predicted annual load, the product of the 5515 5516 appropriate t-statistic and an expression of the prediction's standard error (SE_p) is added to 5517 the predicted annual load, as expressed below:

5519 annual load UCL = $TP_{90\% \text{ CL}}$ = predicted Annual Load + [$(t_{\alpha,n-4})$ SE_p]

5521 where TP_{90%CL} is the upper 90 percent confidence limit on the predicted annual load, 5522

 $t_{\alpha n-4}$ is the value of the one-tailed t statistic at significance level α , with n-4 degrees

of freedom (for 90 percent confidence level, $\alpha = 0.10$), and

n is the number of annual TP loads in the Base Period (= 10)

5526 The standard error of the prediction (SE_p) is comprised of the standard error of the regression 5527 equation and the standard error of the predicted mean value, expressed in the equation below 5528 5529 (Haan 1977)

5530
$$SE_p = s\left[1 + \frac{1}{n} + var(b_1)\frac{(X - X_m)^2}{s^2} + var(b_2)\frac{(P - P_m)^2}{s^2} + var(b_3)\frac{(C - C_m)^2}{s^2} + 5531\right]$$

5532
$$2 \operatorname{cov}(b_1, b_2) \frac{(X - X_m)(P - P_m)}{s^2} + 2 \operatorname{cov}(b_1, b_3) \frac{(X - X_m)(C - C_m)}{s^2} + 2 \operatorname{cov}(b_2, b_3) \frac{(P - P_m)(C - C_m)}{s^2}]^{0.5}$$

5533 where s is the standard error of the regression equation = 5.18054 mt 5534 5535 X_m = average value of the predictor in the Base Period = 3.79116 P_m = average value of the predictor in the Base Period = 3.77727 5536 C_m = average value of the predictor in the Base Period = 0.75970 5537 5538 n = 10 $t_{\alpha n-4} = 1.43976$ 5539

²⁶ The Type I error rate is the probability that the performance measure methodology will reject the null hypothesis (i.e., a determination that the TP load does not meet the performance measure) when in reality the null hypothesis is true – the annual load meets the performance measure, and is therefore also known as the false positive rate.

5540 5541 5542 5543 5544 5545 5546	$var(b_1) = 80.95311$ $var(b_2) = 107.40530$ $var(b_3) = 282.32889$ $cov(b_1,b_2) = 5.10816$ $cov(b_1,b_3) = 39.16755$ $cov(b_2,b_3) = 116.41471$
5547 5548	Collecting terms yields
5549 5550	SE = 5.18054 [$1 + 1/10 + 3.01636 (X-X_m)^2 + 4.00199 (P-P_m)^2 + 10.51975 (C-C_m)^2 +$
5551 5552	$0.38068 (X-X_m) (P-Pm) + 2.91882 (X-X_m) (C-C_m) + 8.67536 (P-P_m) (C-C_m)]^{0.5}$
5552 5553 5554 5555	The above equations can be converted to a performance measure by means of the following conversions to incorporate the load reduction for the collective source controls ²⁷ .
55556 55557 5558	For an Annual Load Target with Y percent load reduction, e.g., using a 25 percent reduction $(Y = 0.25)$, based on untransformed annual loads,
5559 5560	Target equation intercept = intercept at 0% reduction * $(1 - Y)$
5561 5562	Target equation coefficients $(b_i) = b_i$ at 0% reduction * $(1 - Y)$
5563 5564 5565	For an Annual Load Limit with Y percent load reduction based on untransformed annual loads,
5566	s and SE_p = value at 0% reduction * (1 - Y)
5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5576 5577	$var(b_i) \& cov(b_i, b_j) = value at 0\% reduction * (1 - Y)^2$

²⁷ Because of the potential for round-off errors in the calculations, it is recommended to use the accompanying spreadsheets rather than a calculator and the above values.

5578 S-154 Summary Basin 5579

5580 Following the procedures described in Section 2.6, the annual load discharged from S-154 was expressed as a function of the variability of the annual rainfall. Using a zero percent 5581 5582 load reduction, prediction equations for the annual TP load and annual upper confidence limit 5583 above the prediction were derived using this regression equation. The resulting prediction 5584 equation for the annual load was 5585

annual load prediction (mt) = $L = \exp(a + b_1X)$

5588 Where L = 12-month load (mt)

- 5589 a = the intercept of the regression line 5590
 - b_1 = the regression coefficient for X
- X = the 12-month total rainfall (inches) 5591 5592

5593 The predictor X is calculated from the first moment (m_1) of the 12 monthly rainfall totals for 5594 the Water Year:

r_i = monthly rainfall, for i=1 to 12 months of the Evaluation Year
$m_1 = Sum [r_i] / 12$
V 10

 $X = 12 m_1$

5599 Applying the coefficients derived using the ordinary least squares method yields the 5600 following prediction for the annual load 5601

5602 annual load prediction = $\exp(-4.77448 + 0.16555 \text{ Rain})$

The coefficient of determination (R^2) for the resulting equation was 0.802, with a standard 5604 error of regression of 0.74115. Since a transformation of load was required in deriving the 5605 prediction equation, a "back-transformed" standard error of the regression equation was 5606 5607 calculated after the predictions were transformed back to the original units (mt): 24.108 mt. 5608 The back-transformed standard error of regression was approximately 80 percent of the Base Period mean annual load. The coefficient of the regression line was significantly different 5609 5610 from zero at the 90 percent confidence level, with a p-value less than 10 percent for the 5611 coefficient b_1 .

5612

5586

5587

5595 5596 5597

5598

5603

5613 Consistent with Chapter 40E-63 F.A.C., the upper confidence limit for the predicted annual 5614 load was derived as the upper 90 percent confidence limit above the prediction, with an 5615 associated theoretical Type I error (i.e., false positive) rate of 10 percent. In deriving the upper 90 percent upper confidence limit on the predicted annual load, the product of the 5616 5617 appropriate t-statistic and an expression of the prediction's standard error (SE_p) is added to 5618 the predicted annual load:

5619	
5620	annual load UCL = $TP_{90\% \text{ CL}}$ = predicted Annual Load * $\exp[(t_{\alpha,n-2}) \text{ SE}_p]$
5621 5622 5623	where TP _{90%CL} is the upper 90 percent confidence limit on the predicted annual load, $t_{\alpha,n-2}$ is the value of the one-tailed t statistic at significance level α , with n-2 degrees
5624 5625 5626	of freedom (for 90 percent confidence level, $\alpha = 0.10$), and n is the number of annual TP loads in the Base Period (= 8)
5627	The standard error of the prediction (SE_p) is comprised of the standard error of the regression
5628 5629 5630	equation and the standard error of the predicted mean value, expressed in the equation below (Haan 1977)
5631	$SE_{p} = s \left[1 + \frac{1}{n} + \frac{\left(X - X_{m}\right)^{2}}{\sum \left(X_{i} - X_{m}\right)^{2}} \right]^{0.5}$
5632	
5633	where s is the standard error of the regression equation $= 0.74115$
5634	X_m = average value of the predictor in the Base Period = 43.2588
5635	n = 8
5636	$t_{\alpha,n-2} = 1.43976$ 1 / $\Sigma(X_i-X_m)^2 = 1 / 485.64409$
5637	$1 / \Sigma (X_i - X_m)^2 = 1 / 485.64409$
5638	
5639	Collecting terms yields
5640	(1) (1)
5641	$SE_p = 0.74036 [1 + 1/8 + (X-Xm)^2 / 485.64409]^{0.5}$
5642	
5643	The above equations can be converted to a performance measure by means of the following
5644	conversions after a load reduction for the collective source controls has been determined.
5645	For an Annual Lood Toward with Management lood and water the standard on lood and for word annual
5646	For an Annual Load Target with Y percent load reduction based on log transformed annual
5647	loads,
5648 5649	Target equation interpent (a) = interpent at $00/$ reduction $\ln [1/(1 - V)]$
	Target equation intercept (a) = intercept at 0% reduction - $\ln [1/(1 - Y)]$ Target equation coefficient (b) = b at 0% reduction
5650	Target equation coefficient $(b_i) = b_i$ at 0% reduction
5651	For an Annual I and Limit with V nercent load reduction based on log transformed annual
5652 5653	For an Annual Load Limit with Y percent load reduction based on log transformed annual
5653 5654	loads,
5655	SE_p = value at 0% reduction
5656	$SL_p = value at 0.70$ reduction
5657	
5057	

5658 S-191 Summary Basin 5659

Following the procedures described in Section 2.6, the annual load discharged from S-191 was expressed as a function of the variability of the annual rainfall. Using a zero percent load reduction, prediction equations for the annual TP load and annual upper confidence limit above the prediction were derived using this regression equation. The resulting prediction equation for the annual load was

annual load prediction (mt) = $L = a + b_1 X + b_2 C$

5668 Where L = 12-month load (mt)

- a = the intercept of the regression line
- 5671 b_1 = the regression coefficient for X
- 5672 b_2 = the regression coefficient for C
 - X = the natural logarithm of the 12-month total rainfall (inches)
- 5674 C = the natural logarithm of the coefficient of variation calculated from 12 monthly
- 5675 rainfall totals 5676

5666

5667

5669 5670

5673

5684

5677 The predictors X and C are calculated from the first two moments $(m_1 \text{ and } m_2)$ of the 12 5678 monthly rainfall totals for the Water Year:

5679 $r_i = monthly rainfall, for i=1 to 12 months of the Evaluation Year5680<math>m_1 = Sum [r_i] / 12$ 5681 $m_2 = Sum [r_i - m_1]^2 / 12$ 5682 $X = ln(12 m_1)$ 5683 $C = ln \{[(12/11) m_2]^{0.5} / m_1\}$

Applying the coefficients derived using the ordinary least squares method yields thefollowing prediction for the annual load

5688 annual load prediction = -1153.92264 + 351.50517 X + 141.49588 C

5689 5690 The coefficient of determination (\mathbb{R}^2) for the resulting equation was 0.894, with a standard 5691 error of regression of 23.325 mt. The standard error of regression was approximately 17 5692 percent of the Base Period mean annual load. The coefficients of the regression line were 5693 significantly different from zero at the 90 percent confidence level, with p-values less than 10 5694 percent for the coefficients b₁, and b₂.

5696 Consistent with Chapter 40E-63 F.A.C., the upper confidence limit for the predicted annual 5697 load was derived as the upper 90 percent confidence limit above the prediction, with an 5698 associated theoretical Type I error (i.e., false positive) rate of 10 percent. In deriving the

5699 5700 5701 5702	upper 90 percent upper confidence limit on the predicted annual load, the product of the appropriate t-statistic and an expression of the prediction's standard error (SE_p) is added to the predicted Annual Load, as expressed below:
5703	annual load UCL = $TP_{90\% \text{ CL}}$ = predicted Annual Load + [$(t_{\alpha,n-3})$ SE _p]
5704	
5705 5706	where TP _{90%CL} is the upper 90 percent confidence limit on the predicted annual load, $t_{\alpha,n-3}$ is the value of the one-tailed t statistic at significance level α , with n-3 degrees
5707	of freedom (for 90 percent confidence level, $\alpha = 0.10$), and
5708	n is the number of annual TP loads in the Base Period (= 12)
5709	
5710	The standard error of the prediction (SE_p) is comprised of the standard error of the regression
5711	equation and the standard error of the predicted mean value, expressed in the equation below
5712	(Haan 1977)
5713	
5714	$SE_{p} = s \left[1 + \frac{1}{n} + \operatorname{var}(b_{1}) \frac{(X - X_{m})^{2}}{s^{2}} + \operatorname{var}(b_{2}) \frac{(C - C_{m})^{2}}{s^{2}} + 2\operatorname{cov}(b_{1}, b_{2}) \frac{(X - X_{m})(C - C_{m})}{s^{2}} \right]^{0.5}$
5715	
5716	where s is the standard error of the regression equation $= 23.32480$ mt
5717	X_m = average value of the predictor in the Base Period = 3.80143
5718	C_m = average value of the predictor in the Base Period = -0.33003
5719	n = 12
5720	$t_{\alpha,n-3} = 1.38303$
5721	$var(b_1) = 1699.21897$
5722	$var(b_1) = 1152.79755$
5723	$cov(b_1, b_2) = 419.10211$
5724	
5725	Collecting terms yields
5726	Concerning forms yields
5727	$SE_p = 23.3248 \left[1.08333 + 3.12333 (X-X_m)^2 + 2.11893 (C-C_m)^2 + 1.54068 (X-X_m) (C-C_m) \right]^{0.5}$
5728	$SL_p = 25.5210 [1.00555 + 5.12555 (M M_m) + 2.11055 (C C_m) + 1.51000 (M M_m) (C C_m)]$
5729	The above equations can be converted to a performance measure by means of the following
5730	conversions to incorporate the load reduction for the collective source controls.
5731	conversions to incorporate the four reduction for the concentre source controls.
5732	For an Annual Load Target with Y percent load reduction based on untransformed annual
5733	loads,
5733 5734	Target equation intercept = intercept at 0% reduction $*(1 - Y)$
5734 5735	1 arget equation intercept = intercept at 0.70 reduction (1 - 1)
5735 5736	Target equation exactly into $(h) = h$ at $00/$ reduction * $(1 - V)$
5730	Target equation coefficients $(b_i) = b_i$ at 0% reduction * $(1 - Y)$

- 5737 For an Annual Load Limit with Y percent load reduction based on untransformed annual5738 loads,
- 5740 s and SE_p = value at 0% reduction * (1 Y)
- 5741

- 5742 $var(b_i) \& cov(b_i, b_j) = value at 0\% reduction * (1 Y)^2$ 5743
- 5744
- 5745

LOWER KISSIMMEE SUB-WATERSHED

Following the procedures described in Section 2.6, the annual load discharged from the Lower Kissimmee Sub-watershed was expressed as a function of the variability of the annual rainfall. Using a zero percent load reduction, prediction equations for the annual TP load and annual upper confidence limit above the prediction were derived using this regression equation. The resulting prediction equation for the annual load was

annual load prediction (mt) = $L = (a + b_1X)^2$

- Where L = 12-month load (mt)
 - a = the intercept of the regression line
 - b_1 = the regression coefficient for X
 - Y =the 12-month total rainfall (inches)
 - 61 The predictor X is calculated from the first moment (m_1) of the 12 monthly rainfall totals for 62 the Water Year:
 - r_i = monthly rainfall, for i=1 to 12 months of the Evaluation Year m_1 = Sum [r_i] / 12
 - $X = (12 m_1)$
 - Applying the coefficients derived using the ordinary least squares method yields the following prediction for the annual load
- annual load prediction = $[-10.07535 + 0.37945 \text{ Rain }]^2$

5772 The coefficient of determination (R^2) for the resulting equation was 0.751, with a standard 5773 error of the regression equation of 1.59630. Since a transformation of load was required in 5774 deriving the prediction equation, a "back-transformed" standard error of the regression 5775 equation was calculated after the predictions were transformed back to the original units 5776 (mt): 25.697 mt. The back-transformed standard error of regression was approximately 32 5777 percent of the Base Period mean annual load. The coefficient of the regression line was 5778 significantly different from zero at the 90 percent confidence level, with a p-value less than 5779 10 percent for the coefficient b₁.

5780

5781 Consistent with Chapter 40E-63 F.A.C., the upper confidence limit for the predicted annual 5782 load was derived as the upper 90 percent confidence limit above the prediction, with an 5783 associated theoretical Type I error (i.e., false positive) rate of 10 percent. In deriving the 5784 upper 90 percent upper confidence limit on the predicted annual load, the product of the 5785 appropriate t-statistic and an expression of the prediction's standard error (SE_p) is added to 5786 the predicted annual load, as expressed below:

5787 5788	annual load UCL = TP _{90%CL} = [sqrt(predicted annual load) + $(t_{\alpha,n-2} \text{ SE}_p)$] ²
5789 5790 5791 5792 5793	where TP _{90%CL} is the upper 90 percent confidence limit on the predicted annual load, $t_{\alpha,n-2}$ is the value of the one-tailed t statistic at significance level α , with n-2 degrees of freedom (for 90 percent confidence level, $\alpha = 0.10$), and n is the number of annual TP loads in the Base Period (= 14)
5794 5795 5796 5797 5798	The standard error of the prediction (SE_p) is comprised of the standard error of the regression equation and the standard error of the predicted mean value, expressed in the equation below (Haan 1977)
5799	$SE_{p} = s \left[1 + \frac{1}{n} + \frac{\left(X - X_{m}\right)^{2}}{\sum \left(X_{i} - X_{m}\right)^{2}} \right]^{0.5}$
5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5810	where s is the standard error of the regression equation = 1.59630 X_m = average value of the predictor in the Base Period = 48.77 inches n = 14 $t_{\alpha,n-2} = 1.35622$ $1 / \Sigma(X_i-X_m)^2 = 1 / 641.63129$ Collecting terms yields $SE_p = 1.59630 [1 + 1/14 + (X-Xm)^2 / 641.63129]^{0.5}$ The above equations can be converted to a performance measure by means of the following
5812 5813	conversions to incorporate the load reduction for the collective source controls.
5814 5815 5816 5817	For an Annual Load Target with Y percent reduction and sqrt-transformed annual load, Target equation intercept = value at 0% reduction * $sqrt(1 - Y)$ Target equation coefficient (b _i) = value at 0% reduction * $sqrt(1 - Y)$
5818 5819 5820 5821	For an Annual Load Limit with Y percent load reduction and sqrt-transformed annual load, s = value at 0% reduction * sqrt(1 - Y)

5822	EAST LAKE OKEECHOBEE SUB-WATERSHED
5823 5824	C-44 Hydrologic Unit
5825	
5826 5827 5828 5829 5830 5831	Following the procedures described in Section 2.6, the annual load discharged from S-191 was expressed as a function of the variability of the annual rainfall. Using a zero percent load reduction, prediction equations for the annual TP load and annual upper confidence limit above the prediction were derived using this regression equation. The resulting prediction equation for the annual load was
5832 5833	annual load prediction (mt) = $L = \exp [a + b_1 X + b_2 S]$
5834 5835 5836 5837 5838 5839	Where a = the intercept of the regression line b_1 = the regression coefficient for X X = the natural logarithm of the 12-month total rainfall (inches) b_2 = the regression coefficient for S S = skewness of annual rainfall
5840 5841 5842 5843 5844	The predictors X and S are calculated from the first three moments $(m_1, m_2 \text{ and } m_3)$ of the 12 monthly rainfall totals for the Water Year: $r_i = \text{monthly rainfall}$, for i=1 to 12 months of the Evaluation Year $m_1 = \text{Sum } [r_i] / 12$ $m_2 = \text{Sum } [r_i - m_1]^2 / 12$
5845 5846	$m_3 = Sum [r_i - m_1]^3 / 12$ $X = ln(12 m_1)$
5847 5848	$S = (12/11) m_3 / m_2^{-1.5}$
5849 5850 5851 5852	Applying the coefficients derived using the ordinary least squares method yields the following prediction for the annual load annual load prediction = $\exp \left[-5.90005 + 2.47871 \text{ X} + 0.32418 \text{ S}\right]$
5853	
5854 5855 5856 5857 5858 5859 5860 5860 5861	The coefficient of determination (\mathbb{R}^2) for the resulting equation was 83.9 percent, with a standard error of regression of 0.28226. Since a transformation of load was required in deriving the prediction equation, a "back-transformed" standard error of the regression equation was calculated after the predictions were transformed back to the original units (mt): 16.588 mt. The back-transformed standard error of regression was approximately 30 percent of the Base Period mean annual load. The coefficients of the regression line were significantly different from zero at the 90 percent confidence level, with p-values less than 10 percent for the coefficients b ₁ , b ₂ and b ₃ .

5862 5863 5864 5865 5866 5867 5868 5869 5869 5870	Consistent with Chapter 40E-63 F.A.C., the upper confidence limit for the predicted annual load was derived as the upper 90 percent confidence limit above the prediction, with an associated theoretical Type I error (i.e., false positive) rate of 10 percent ²⁸ . In deriving the upper 90 percent upper confidence limit on the predicted Annual Load, the product of the appropriate t-statistic and an expression of the prediction's standard error (SE _p) is added to the predicted annual load, as expressed below: Upper Conf. Limit on prediction = exp [ln(annual load) + (t-value * SE _p)]
5871 5872	= predicted annual load * exp ($1.39682 * SE_p$)
5873 5874	$SE_{p} = 0.28226 \left[1 + 1/11 + 2.17746 \left(X - X_{m} \right)^{2} + 0.37718 \left(S - S_{m} \right)^{2} + -0.19128 \left(X - X_{m} \right) \left(S - S_{m} \right) \right]^{0.5}$
5875 5876 5877 5878	Where X_m = mean of the log-transformed annual total rainfall for the Base Period = 3.82565 S_m = mean of the skewness of the annual total rainfall for the Base Period = 0.880 t = 1.39682
5879 5880 5881	The above equations can be converted to a performance measure by means of the following conversions after a load reduction for the collective source controls has been determined.
5882 5883 5884	For an Annual Load Target with Y percent load reduction based on log transformed annual loads,
5885 5886 5887	Target equation intercept (a) = intercept at 0% reduction - $\ln [1/(1 - Y)]$ Target equation coefficient (b _i) = b _i at 0% reduction
5888 5889 5890	For an Annual Load Limit with Y percent load reduction based on log transformed annual loads,
5891 5892 5893 5894	SE_p = value at 0% reduction

²⁸ The Type I error rate is the probability that the performance measure methodology will <u>reject</u> the null hypothesis (i.e., a determination that the TP load does not meet the performance measure) when in reality the null hypothesis is true – the annual load meets the performance measure, and is therefore also known as the false positive rate.

5895 **L-8 Summary Basin** 5896

5902

5897 Following the procedures described in Section 2.6, the annual load discharged from the L-8 5898 Summary Basin was expressed as a function of the variability of the annual rainfall. Using a zero percent load reduction, prediction equations for the annual TP load and annual upper 5899 confidence limit above the prediction were derived using this regression equation. The 5900 resulting prediction equation for the annual load was 5901

590Z	
5903	annual load prediction (mt) = $L = (a + b_1X + b_2S + b_3C)^2$
5904	
5905	Where $L = 12$ -month load (mt)
5906	a = the intercept of the regression line
5907	b_1 = the regression coefficient for X
5908	X = the 12-month total rainfall (inches)
5909	b_2 = the regression coefficient for S
5910	S = the 12-month total rainfall skewness
5911	b_3 = the regression coefficient for C
5912	C = the 12-month total rainfall coefficient of variation
5913	
5914	The predictors X, S and C are calculated from the first moment (m_1) of the 12 monthly
5915	rainfall totals for the Water Year:
5916	r_i = monthly rainfall, for i=1 to 12 months of the Evaluation Year
5917	$m_1 = Sum [r_i] / 12$
5918	$m_2 = Sum [r_i - m_1]^2 / 12$
5919	$m_3 = Sum [r_i - m_1]^3 / 12$
5920	$X = (12 m_1)$
5921	$C = [(12/11) m_2]^{0.5}/m_1$
5922	$S = (12/11) m_3 / m_2^{-1.5}$
5923	
5924	Applying the coefficients derived using the ordinary least squares method yields the
5925	following prediction equation for the annual load
5926	
5927	annual load Prediction = $(-5.6662 + 0.09213 \text{ X} - 1.72191 \text{ S} + 7.75787 \text{ C})^2$
5928	
5929	The coefficient of determination (\mathbb{R}^2) for the resulting equation was 0.841, with a standard
5930	error of regression of 0.51599. Since a transformation of load was required in deriving the
5931	prediction equation, a "back-transformed" standard error of the regression equation was
5932	calculated after the predictions were transformed back to the original units (mt): 3.560 mt.
5933	The back-transformed standard error of regression was approximately 21 percent of the Base

Period mean annual load. The coefficients of the regression line were significantly different 5934 5935 from zero at the 90 percent confidence level, with p-values less than 10 percent for the 5936 coefficients b_1 , b_2 and b_3 . 5937

Consistent with Chapter 40E-63 F.A.C., the upper confidence limit for the predicted annual 5938 load was derived as the upper 90 percent confidence limit above the prediction, with an 5939 associated theoretical Type I error (i.e., false positive) rate of 10 percent²⁹. In deriving the 5940 upper 90 percent upper confidence limit on the predicted annual load, the product of the 5941 5942 appropriate t-statistic and an expression of the prediction's standard error (SE_p) is added to 5943 the predicted Annual Load, as expressed below:

annual load UCL = $TP_{90\%CL}$ = [sqrt(predicted annual load) + (t_{a,n-4}) SE_p]² 5945 5946

5947 where TP_{90%CL} is the upper 90 percent confidence limit on the predicted annual load, $t_{\alpha,n-4}$ is the value of the one-tailed t statistic at significance level α , with n-4 degrees 5948 5949 of freedom (for 90 percent confidence level, $\alpha = 0.10$), and 5950

n is the number of annual TP loads in the Base Period (= 9)

5952 The standard error of the prediction (SE_p) is comprised of the standard error of the regression 5953 equation and the standard error of the predicted mean value, expressed in the equation below 5954 5955 (Haan 1977)

5956
$$SE_p = s\left[1 + \frac{1}{n} + \operatorname{var}(b_1)\frac{(X - X_m)^2}{s^2} + \operatorname{var}(b_2)\frac{(S - S_m)^2}{s^2} + \operatorname{var}(b_3)\frac{(C - C_m)^2}{s^2} + \operatorname{var}(b_3)\frac{(X - X_m)^2}{s^2}\right]$$

5957

5951

5944

 $2\operatorname{cov}(b_1, b_2) \frac{(X - X_m)(S - S_m)}{s^2} + 2\operatorname{cov}(b_1, b_3) \frac{(X - X_m)(C - C_m)}{s^2} + 2\operatorname{cov}(b_2, b_3) \frac{(S - S_m)(C - C_m)}{s^2}]^{0.5}$ 5958 5959

5960 where s is the standard error of the regression equation = 0.51601Where X_m = mean rainfall during Base Period (54.299 inches) 5961 S_m = mean rainfall skewness during Base Period (0.557) 5962 C_m = mean rainfall coefficient of variation during Base Period (0.720) 5963 5964 t-value = 1.47588 n = 95965 5966 $var(b_1) = 0.00056$ 5967 $var(b_2) = 0.26130$ var(b3) = 3.895915968

> ²⁹ The Type I error rate is the probability that the performance measure methodology will reject the null hypothesis (i.e., a determination that the TP load does not meet the performance measure) when in reality the null hypothesis is true – the annual load meets the performance measure, and is therefore also known as the false positive rate.

5969	$cov(b_1, b_2) = -0.00007$
5970	$cov(b_1, b_3) = 0.02660$
5971	$cov(b_2, b_3) = -0.58242$
5972	
5973	Collecting terms yields
5974	
5975	SE = $0.516 [1 + 1/9 + 0.0021 (X-X_m)^2 + 0.9814 (S-S_m)^2 + 14.6322 (C-C_m)^2 + 0.0006 (X-C_m)^2 + 0.0006 $
5976	$X_{\rm m}$) (S–S _m) + 0.1998 (X-X _m) (C-C _m) + -4.375 (S-S _m) (C-C _m)] ^{0.5}
5977	
5978	The above equations can be converted to a performance measure by means of the following
5979	conversions to incorporate the load reduction for the collective source controls.
5980	
5981	For an Annual Load Target with Y percent reduction and sqrt-transformed annual load,
5982	Target equation intercept = value at 0% reduction * sqrt(1 - Y)
5983	Target equation coefficient (b_i) = value at 0% reduction * sqrt(1 - Y)
5984	
5985	For an Annual Load Limit with Y percent load reduction and sqrt-transformed annual load,
5986	s = value at 0% reduction * sqrt(1 - Y)
5987	
5988	
5989	
5990	
5991	
5992	
5993	
5994	
5995	
5996	
5997	
5998	
5999	
6000	

6001 Indian Prairie Sub-watershed

6002

6008 6009

6010

6025

6028

6030

Following the procedures described in Section 2.6, the annual load discharged from the Indian Prairie Sub-watershed was expressed as a function of the variability of the annual rainfall. Using a zero percent load reduction, prediction equations for the annual TP load and annual upper confidence limit above the prediction were derived using this regression equation. The resulting prediction equation for the annual load was

annual load prediction (mt) = $\ln(L) = \exp(a + b_1X + b_2C)$

6011 Where L = 12-month load (mt),

- a = the intercept of the regression line
- 6013 b_1 = the regression coefficient for X
- 6014 b_2 = the regression coefficient for C
- 6015 X = the natural logarithm of the 12-month total rainfall [ln(inches)]
- 6016 C = the 12-month total rainfall coefficient of variation 6017

6018 The predictors X and C are calculated from the first two moments $(m_1 \text{ and } m_2)$ of the 12 6019 monthly rainfall totals for the Water Year:

6020	r_i = monthly rainfall, for i=1 to 12 months of the Evaluation Year

6021 $m_1 = Sum [r_i] / 12$

6022 $m_2 = Sum [r_i - m_1]^2 / 12$

6023 $X = \ln(12 m_1)$

6024 $C = [(12/11) m_2]^{0.5}/m_1$

6026 Applying the coefficients derived using the ordinary least squares method yields the 6027 following prediction for the annual load

6029 annual load prediction = exp $[-12.48183 + 4.02125 \ln(\text{Rain}) + 1.7627 \text{ CV}]$

The coefficient of determination (R^2) for the resulting equation was 0.911, with a standard 6031 6032 error of regression of 0.20346. Since a transformation of load was required in deriving the 6033 prediction equation, a "back-transformed" standard error of the regression equation was 6034 calculated after the predictions were transformed back to the original units (mt): 14.794 mt. 6035 The back-transformed standard error of regression was approximately 24 percent of the Base Period mean annual load. The coefficients of the regression line were significantly different 6036 from zero at the 90 percent confidence level, with p-values less than 10 percent for the 6037 6038 coefficients b_1 and b_2 . 6039

Consistent with Chapter 40E-63 F.A.C., the upper confidence limit for the predicted annual 6040 6041 load was derived as the upper 90 percent confidence limit above the prediction from Equation (1), with an associated theoretical Type I error (i.e., false positive) rate of $10\%^{30}$. 6042 6043 In deriving the upper 90 percent upper confidence limit on the predicted annual load, the 6044 product of the appropriate t-statistic and an expression of the prediction's standard error 6045 (SE_p) is added to the predicted annual load, as expressed below: 6046 6047 annual load UCL = $TP_{90\%CL}$ = exp [ln(predicted annual load) + [(t_{a.n-3}) SE_p] 6048 6049 where TP_{90%CL} is the upper 90 percent confidence limit on the predicted annual load, $t_{\alpha n-3}$ is the value of the one-tailed t statistic at significance level α , with n-3 degrees of 6050 6051 freedom (for 90 percent confidence level, $\alpha = 0.10$), and 6052 n is the number of annual TP loads in the Base Period (= 13)6053 6054 The standard error of the prediction (SE_p) is comprised of the standard error of the regression 6055 equation and the standard error of the predicted mean value, expressed in the equation below 6056 (Haan 1977) 6057 $SE_{p} = s \left[1 + \frac{1}{n} + \operatorname{var}(b_{1}) \frac{(X - X_{m})^{2}}{s^{2}} + \operatorname{var}(b_{2}) \frac{(C - C_{m})^{2}}{s^{2}} + 2\operatorname{cov}(b_{1}, b_{2}) \frac{(X - X_{m})(C - C_{m})}{s^{2}} \right]^{0.5}$ 6058 6059 6060 where s is the standard error of the regression equation = 0.203466061 X_m = average value of the predictor in the Base Period = 3.74445 C_m = average value of the predictor in the Base Period = 0.788 6062 6063 $t_{\alpha.n-3} = 1.37218$ 6064 $var(b_1) = 0.16228$ $var(b_2) = 0.13236$ 6065 $cov(b_1, b_2) = 0.08990$ 6066 6067 6068 Collecting terms yields 6069 SE = $0.20346 [1 + 1/13 + 3.92019 (X-X_m)^2 + 3.19741 (C-C_m)^2 + 4.34342 (X-X_m) (C-C_m)]^{0.5}$ 6070 6071 6072 The above equations can be converted to a performance measure by means of the following 6073 conversions after a load reduction for the collective source controls has been determined. 6074 6075 For an Annual Load Target with Y% load reduction and log-transformed annual load, ³⁰ The Type I error rate is the probability that the performance measure methodology will reject the null

³⁰ The Type I error rate is the probability that the performance measure methodology will <u>reject</u> the null hypothesis (i.e., a determination that the TP load does not meet the performance measure) when in reality the null hypothesis is true – the annual load meets the performance measure, and is therefore also known as the false positive rate.

6076 6077	Target Equation intercept = value at 0% reduction $-\ln[1/(1-Y)]$
6078 6079	Target Equation coefficients (b_i) = value at 0% reduction
6080 6081	For example, if the load reduction = 30 percent, the Annual Load Target becomes
6082 6083	Annual Load Target = exp $[-12.48183 - \ln[1/(1-0.3)] + 4.02125 \ln(\text{Rain}) + 1.7627 \text{ CV}]$
6084	Annual Load Target = exp (-12.83843 + 4.02125 X + 1.7627 C)
6085 6086 6087 6088 6089 6090 6091 6092 6093	For an Annual Load Limit with Y percent load reduction based on log transformed annual loads, SE_p = value at 0% reduction

6094 **Fisheating Creek Summary Basin**

6095

6096 Following the procedures described in Section 2.6, the annual load discharged from the 6097 Fisheating Creek Summary Basin was expressed as a function of the variability of the annual 6098 rainfall. Using a zero percent load reduction, prediction equations for the annual TP load and 6099 annual upper confidence limit above the prediction were derived using this regression equation. The resulting prediction equation for the annual load was 6100 6101

0101	
6102	annual load prediction (mt) = $L = a + b_1 X$
6103	Where $L = 12$ -month load (mt),

- 6104 a = the intercept of the regression line,
- b_1 = the regression coefficient for X, 6105
- X = the natural logarithm of the 12-month total rainfall (inches) 6106
- 6107

6112

6113

6108 The predictor X is calculated from the first moment (m_1) of the 12 monthly rainfall totals for the Water Year: 6109

- 6110 r_i = monthly rainfall, for i=1 to 12 months of the Evaluation Year 6111
 - $m_1 = Sum [r_i] / 12$
 - $X = ln(12 m_1)$

6114 Applying the coefficients derived using the ordinary least squares method yields the 6115 following prediction for the annual load 6116

- 6117 annual load prediction = $-486.14648 + 142.06268 \ln(Rain)$
- 6118

6119 The coefficient of determination (R^2) for the resulting equation was 0.535, with a standard error of regression of 34.040 mt. The standard error of regression was approximately 45 6120 percent of the Base Period mean annual load. The coefficient of the regression line was 6121 6122 significantly different from zero at the 90 percent confidence level, with a p-value less than 6123 10 percent for the coefficient b_1 .

6124 6125 Consistent with Chapter 40E-63 F.A.C., the upper confidence limit for the predicted annual 6126 load was derived as the upper 90 percent confidence limit above the prediction from Equation (1), with an associated theoretical Type I error (i.e., false positive) rate of $10\%^{31}$. 6127

In deriving the upper 90 percent upper confidence limit on the predicted annual load, the 6128

³¹ The Type I error rate is the probability that the performance measure methodology will reject the null hypothesis (i.e., a determination that the TP load does not meet the performance measure) when in reality the null hypothesis is true - the annual load meets the performance measure, and is therefore also known as the false positive rate.

6129 6130 6131	product of the appropriate t-statistic and an expression of the prediction's standard error (SE_p) is added to the predicted annual load, as expressed below: annual load UCL = $TP_{90\% CL}$ = predicted Annual Load + $[(t_{\alpha,n-2}) SE_p]$
6132 6133 6134	where TP _{90%CL} is the upper 90 percent confidence limit on the predicted annual load, $t_{\alpha,n-2}$ is the value of the one-tailed t statistic at significance level α , with n-2 degrees
6135 6136 6137	of freedom (for 90 percent confidence level, $\alpha = 0.10$), and n is the number of annual TP loads in the Base Period (= 11)
6138 6139 6140 6141	The standard error of the prediction (SE_p) is comprised of the standard error of the regression equation and the standard error of the predicted mean value, expressed in the equation below (Haan 1977)
6142	$SE_{p} = s \left[1 + \frac{1}{n} + \frac{\left(X - X_{m}\right)^{2}}{\sum \left(X_{i} - X_{m}\right)^{2}} \right]^{0.5}$
6143 6144	where s is the standard error of the regression equation $= 34.04011$
6145 6146	X_m = average value of the predictor in the Base Period = 3.9502 n = 11
6147	$t_{\alpha,n-2} = 1.38303$
6148	$1/\Sigma(X_i-X_m)^2 = 1/0.59477$
6149	
6150 6151	Collecting terms, Eqn (4) becomes
6152 6153	$SE_p = SE = 34.04011 [1 + 1/11 + (X-Xm)^2 / 0.59477]^{0.5}$
6154	The above equations can be converted to a performance measure by means of the following
6155	conversions after a load reduction for the collective source controls has been determined.
6156 6157	For an Annual Load Target with Y percent reduction based on untransformed annual loads,
6158	
6159 6160	Target Eqn. Intercept = intercept at 0% reduction $*(1 - Y)$
6161 6162	Target Equation coefficients (b_i) = b_i at 0% reduction * (1 – Y)
6163 6164	For an Annual Load Limit with Y percent reduction based on untransformed annual loads,
6165 6166	s and SE_p = value at 0% reduction * (1 - Y)
6167 6168	$var(b_i) \& cov(b_{i,bj}) = value at 0\% reduction * (1 - Y)^2$

6169	WEST LAKE OKEECHOBEE SUB-WATERSHED
6170	
6171	S-4/Industrial Canal Hydrologic Unit
6172 6173 6174 6175 6176	Following the procedures described in Section 2.6, the annual load discharged from the S-4 Hydrologic Unit was expressed as a function of the variability of the annual rainfall. Using a zero percent load reduction, prediction equations for the annual TP load was derived using this regression equation. The resulting prediction equation for the annual load was
6177 6178	annual load prediction (mt) = $L = a + b_1 X + b_2 C$
6179 6180 6181 6182	Where: L = 12-month load (mt) a = the intercept of the regression line $b_1 =$ the regression coefficient for X $b_2 =$ the regression coefficient for C
6183 6184 6185	X = the 12-month total rainfall (inches) C = the coefficient of variation calculated from 12 monthly rainfall totals
6186 6187 6188 6189	The predictors X and C are calculated from the first two moments (m_1 and m_2) of the 12 monthly rainfall totals for the Water Year: $r_i = monthly rainfall, for i=1 to 12 months of the Evaluation Year$ $m_1 = Sum [r_i] / 12$
6190 6191 6192 6193	$m_{2} = Sum [r_{i} - m_{1}]^{2} / 12$ $X = 12 m_{1}$ $C = [(12/11) m_{2}]^{0.5} / m_{1}$
6194 6195 6196 6197 6198 6199	The coefficient of determination (R^2) for the resulting equation was 0.762, with a standard error of regression of 4.323 mt. The standard error of regression was approximately 25 percent of the Base Period mean annual load. The slope coefficients of the regression equation were significantly different from zero at the 90 percent confidence level, with p-values less than ten percent for the coefficients b_1 and b_2 .
6200 6201 6202 6203 6204 6205	Consistent with Chapter 40E-63 F.A.C., the upper confidence limit was derived as the upper 90 percent confidence limit above the annual load prediction described above, with an associated theoretical Type I error (i.e., false positive) rate of 10%. In deriving the upper 90 percent upper confidence limit (UCL), the product of the appropriate t-statistic and an expression of the prediction's standard error (SE _p) is added to the predicted annual load:
6205 6206 6207	UCL on the annual load Limit = $TP_{90\% \text{ CL}}$ = Target + $[(t_{\alpha,n-3}) TP_{90\% \text{ CL}}$ = Target + $[(t_{\alpha,n-3}) SE_p]$

6208 6209 6210 6211 6212 6213 6214 6215 6216	where: TP _{90%CL} is the UCL corresponding to the upper 90 percent confidence limit, $t_{\alpha,n-3}$ is the value of the one-tailed t statistic at significance level α , with n-3 degrees of freedom (for 90 percent confidence level, $\alpha = 0.10$), and n is the number of annual TP loads in the Base Period (= 9) The standard error of the prediction (SE _p) is comprised of the standard error of the regression equation and the standard error of the predicted mean value, expressed in the equation below (Haan 1977)
6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230	$SE_{p} = s \left[1 + \frac{1}{n} + var(b_{1}) \frac{(X - X_{m})^{2}}{s^{2}} + var(b_{2}) \frac{(C - C_{m})^{2}}{s^{2}} + 2 cov(b_{1}, b_{2}) \frac{(X - X_{m})(C - C_{m})}{s^{2}} \right]^{0.5}$ where: s is the standard error of the regression equation = 4.323 mt X_{m} = average value of the predictor in the Base Period = 45.7044 inches C_{m} = average value of the predictor in the Base Period = 0.9137 n = 9 $t_{\alpha,n-3} = 1.43976$ $var(b_{1}) = 0.02094$ $var(b_{2}) = 38.08623$ $cov(b_{1},b_{2}) = 0.08270$ Collecting terms yields $SE_{p} = 4.32303 \left[1 + 1/9 + 0.00112 (X-X_{m})^{2} + 2.03794 (C-C_{m})^{2} + 0.00886 (X-X_{m}) (C-C_{m}) \right]^{0.5}$
6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242	The above equations can be converted to a performance measure by means of the following conversions after a load reduction for the collective source controls has been determined. For an Annual Load Target with Y percent reduction based on untransformed annual loads, Target Eqn. Intercept = intercept at 0% reduction * $(1 - Y)$ Target Equation coefficients (b _i) = b _i at 0% reduction * $(1 - Y)$ For an Annual Load Limit with Y percent reduction based on untransformed annual loads, s and SE _p = value at 0% reduction * $(1 - Y)$ var(b _i) & cov(b _{i,bj}) = value at 0% reduction * $(1 - Y)^2$
6243 6244	East Caloosahatchee Hydrologic Unit

6245 6246 6247 6248 6249 6250	Following the procedures described in Section 2.6, the annual load discharged from the East Caloosahatchee Hydrologic Unit was expressed as a function of the variability of the annual rainfall. Using a zero percent load reduction, prediction equations for the annual TP load and annual upper confidence limit above the prediction were derived using this regression equation. The resulting prediction equation for the annual load was
6251 6252	annual load prediction (mt) = $L = a + b_1 X$
6253	Where $L = 12$ -month load (mt),
6254	a = the intercept of the regression line,
6255	b_1 = the regression coefficient for X,
6256	X = the 12-month total rainfall (inches)
6257	
6258	The predictor X is calculated from the first moment (m_1) of the 12 monthly rainfall totals for
6259	the Water Year:
6260	r_i = monthly rainfall, for i=1 to 12 months of the Evaluation Year
6261	$m_1 = Sum [r_i] / 12$
6262	$X = (12 m_1)$
6263	
6264	Applying the coefficients derived using the ordinary least squares method yields the
6265	following prediction for the annual load
6266	1122 = 105 41110 + 5 12752 (D-in)
6267	annual load prediction = $-195.41118 + 5.12752$ (Rain)
6268 6269	The coefficient of determination (R^2) for the resulting equation was 0.726, with a standard
6270	error of regression of 31.138 mt. The standard error of regression was approximately 47
6270	percent of the Base Period mean annual load. The coefficient of the regression line was
6272	significantly different from zero at the 90 percent confidence level, with a p-value less than
6272	10 percent for the coefficient b_1 .
6276	To percent for the coefficient of.
6275	Consistent with Chapter 40E-63 F.A.C., the upper confidence limit for the predicted annual
6276	load was derived as the upper 90 percent confidence limit above the prediction from
6277	Equation (1), with an associated theoretical Type I error (i.e., false positive) rate of $10\%^{32}$.
6278	In deriving the upper 90 percent upper confidence limit on the predicted annual load, the
6279	product of the appropriate t-statistic and an expression of the prediction's standard error
6280	(SE _p) is added to the predicted annual load, as expressed below:
6281	

³² The Type I error rate is the probability that the performance measure methodology will <u>reject</u> the null hypothesis (i.e., a determination that the TP load does not meet the performance measure) when in reality the null hypothesis is true – the annual load meets the performance measure, and is therefore also known as the false positive rate.

6282	annual load UCL = $TP_{90\% \text{ CL}}$ = predicted Annual Load + $[(t_{\alpha,n-2}) \text{ SE}_p]$
6283	
6284	where TP _{90%CL} is the upper 90 percent confidence limit on the predicted annual load,
6285	$t_{\alpha,n-2}$ is the value of the one-tailed t statistic at significance level α , with n-2 degrees
6286	of freedom (for 90 percent confidence level, $\alpha = 0.10$), and
6287	n is the number of annual TP loads in the Base Period (= 9)
6288	
6289	The standard error of the prediction (SE_p) is comprised of the standard error of the regression
6290	equation and the standard error of the predicted mean value, expressed in the equation below
6291	(Haan 1977)
6292	
6293	$SE_p = s \left[1 + \frac{1}{n} + \frac{(X - X_m)^2}{\sum_i (X_i - X_m)^2} \right]^{0.5}$
0004	n $\sum (X_i - X_m)^2$
6294	
6295	where s is the standard error of the regression equation $= 31.13751$
6296	X_m = average value of the predictor in the Base Period = 3.9502
6297	n = 9
6298	$t_{\alpha,n-2} = 1.41492$ 1 / $\Sigma(X_i-X_m)^2 = 1 / 675.50602$
6299	$1 / \Sigma (X_i - X_m)^2 = 1 / 6/5.50602$
6300	
6301	Collecting terms yields
6302	
6303	$SE_p = SE = 31.13751 [1 + 1/9 + (X-Xm)^2 / 675.50602]^{0.5}$
6304	
6305	The above equations can be converted to a performance measure by means of the following
6306	conversions after a load reduction for the collective source controls has been determined.
6307	
6308	For an Annual Load Target with Y percent reduction based on untransformed annual loads,
6309	
6310	Target Eqn. Intercept = intercept at 0% reduction $*(1 - Y)$
6311	
6312	Target Equation coefficients $(b_i) = b_i$ at 0% reduction * $(1 - Y)$
6313	
6314	For an Annual Load Limit with Y percent reduction based on untransformed annual loads,
6315	
6316	s and SE_p = value at 0% reduction * (1 - Y)
6317	$var(b_i) \& cov(b_{i,bj}) = value at 0\% reduction * (1 - Y)^2$

APPENDIX C – SUMMARY OF DATA SOURCES USED FOR THE DEVELOPMENT OF THE PERFORMANCE MEASURE METHODOLOGIES

6321 6322 6323

Data Collection Sources and Methods: Water Quantity – Flows

6324 The District computes flow at all of the primary water control structures serving the basins
6325 within the Lake Okeechobee Watershed. Water control structures include pumps, gated
6326 spillways, and gated culverts.

6327

6328 The District's hydrologic database (DBHYDRO) stores one or more flow data sets at each 6329 structure. Each flow data set is created using a unique combination of sources of stage and 6330 control operations data. The District uses its data to perform water budget analyses and flow 6331 estimation techniques to obtain a "preferred" flow data set at each structure. Table C-1 shows 6332 the basin discharge flow data sets used in the annual phosphorus load calculation for those basins with a load-based performance measure³³; these are available in the District's 6333 6334 hydrologic database. The list of outfall structures used in the annual phosphorus load 6335 calculation will be adjusted by the District to account for any changes in outflow structures 6336 from the individual basins, including those changes caused by construction of regional 6337 projects.

- 6338
- 6339 Water Quality
- 6340

Raw water samples for the Lake Okeechobee Watershed phosphorus load calculations are
collected by automatic samplers or grab samples. Current raw water sample collecting
methods at structures utilized in the Lake Okeechobee Watershed basins phosphorus load
calculation are listed in Table C-2.

 $^{^{33}}$ A similar table will be prepared at a later date for those basins where a performance indicator is recommended.

Table C-1. Database keys for structure flow data.

Summary Basin Sub-watershed Structure DBKEY Type* or Hydrologic Unit Taylor Creek/Nubbin Slough S-133 Summary Basin S-133 15637 PREF S-154 Taylor Creek/Nubbin Slough S-154 Summary Basin 15629 PREF Taylor Creek/Nubbin Slough S-191 Summary Basin S-191 15639 PREF Lower Kissimmee S-65E 15631 PREF East Lake Okeechobee C-44 PREF S-308 15626 C-44 JW224 S-80 PREF East Lake Okeechobee East Lake Okeechobee L-8 Culv 10A 15640 PREF East Lake Okeechobee L-8 S-5AW MG614 N/A PREF Fast Lake Okeechobee L-8 S-5AS TA410 East Lake Okeechobee L-8 S-5AE L7443 TELE East Lake Okeechobee L-8 City of WPB #2 TW079 TELE Indian Prairie Sub-watershed G-33 US349 TELE Indian Prairie Sub-watershed W3841 TELE G-34 Indian Prairie Sub-watershed G-74 88187 TELE Indian Prairie Sub-watershed G-75 87646 TELE Indian Prairie Sub-watershed 87645 TELE G-76 Indian Prairie Sub-watershed 15654 L-61 F N/A Indian Prairie Sub-watershed S-68 15632 PREF Indian Prairie Sub-watershed S-71 15633 PREF Indian Prairie Sub-watershed S-72 15634 PREF Indian Prairie Sub-watershed S-84 15636 PREF Indian Prairie Sub-watershed S-127 (Pump) 15641 PREF Indian Prairie Sub-watershed S-127 (Spillway) 15819 TELE S-129 (Pump) Indian Prairie Sub-watershed 15642 PREF Indian Prairie Sub-watershed S-129 (Spillway) 15823 TELE Indian Prairie Sub-watershed S-131 (Pump) 15643 PREF Indian Prairie Sub-watershed S-131 (Spillway) M2931 TELE WH036 USGS Fisheating Creek/Nicodemus Slough Fisheating Creek FISHCR West Lake Okeechobee S-4 / Industrial Canal EPD-07 EAA EPD West Lake Okeechobee S-4 / Industrial Canal S-310 15628 PREF West Lake Okeechobee S-4 / Industrial Canal S-169 15590 NA West Lake Okeechobee S-4 / Industrial Canal 15630 PREF S-4 S-235 15564 West Lake Okeechobee S-4 / Industrial Canal SP01 West Lake Okeechobee East Caloosahatchee S-77 DJ235 COE West Lake Okeechobee East Caloosahatchee S-78 DJ236 COE East Caloosahatchee CULV5A TA604 CR10 West Lake Okeechobee See 40E-61, F.A.C South Lake Okeechobee EAA C-10 PREF South Lake Okeechobee Ch 298 Districts 15645 South Lake Okeechobee Ch 298 Districts C-12 15646 PREF South Lake Okeechobee Ch 298 Districts C-12A 15647 PREF Ch 298 Districts C-4A 15648 PREF South Lake Okeechobee South Lake Okeechobee Ch 298 Districts S-236 15644 PREF Flow data type: PREF PREFERRED VALUE CAMPBELL SCIENTIFIC INC. MEASUREMENT AND CONTROL MODULE CR10 TELE TELEMETRY (RADIO NETWORK) UNKNOWN CHART-TYPE RECORDER 102

6347

NA

SP01

COE

USGS

NOT APPLICABLE

SOLID STATE LOGGER U.S. ARMY CORPS OF ENGINEERS

U.S. GEOLOGICAL SERVICE

Gary Goforth, Inc. September 2012

Table C-2. Sampling methods for structure water quality data.

Sub-watershed	Summary Basin or Hydrologic Unit	Structure or Station	TP Collection Site ID	TP Collection Site	Instrument
Taylor Creek/Nubbin Slough	S-133 Summary Basin	S-133	S133	Pump	Grab
Taylor Creek/Nubbin Slough	S-154 Summary Basin	S-154	S154	Gravity	A*
Taylor Creek/Nubbin Slough	S-191 Summary Basin	S-191	S191	Pump	A*
Lower Kissim	nee	S-65E	S65E	Gravity	A*
East Lake Okeechobee	C-44	S-308	S308C	Gravity	Grab
East Lake Okeechobee	C-44	S-80	S80	Gravity	Grab
East Lake Okeechobee	L-8	Culv 10A	CLV10A	Gravity	Grab
East Lake Okeechobee	L-8	S-5AW	S5AW	Gravity	Grab (Note 1
East Lake Okeechobee	L-8	S-5AS	S5AS	Gravity	Grab (Note 1)
East Lake Okeechobee	L-8	S-5AE	S5AE	Gravity	Grab (Note 1)
East Lake Okeechobee	L-8	City of WPB #2	None	Pump	None (Note 2
Indian Prairie Sub-w	reterrihed	G-33	C38W	Currenter	Grab
Indian Prairie Sub-w		G-34	L59E	Gravity Gravity	Grab
Indian Prairie Sub-w		G-74	L59E	Gravity	Grab
Indian Prairie Sub-w		G-74 G-75	L59W	Gravity	Grab
Indian Prairie Sub-w		G-76	L60W	Gravity	Grab
Indian Prairie Sub-w	L-61 E	L61E	Gravity	Grab	
Indian Prairie Sub-w	S-68	S68	Gravity	Grab	
Indian Prairie Sub-w	S-71	S71	Gravity	A*	
Indian Prairie Sub-w	S-72	S72	Gravity	A*	
Indian Prairie Sub-w	S-84	S84	Gravity	Grab	
Indian Prairie Sub-w		S-127 (Pump)	S127	Pump	Grab
Indian Prairie Sub-w		S-127 (Pullp) S-127 (Spillway)	S127 S127	Gravity	Grab
Indian Prairie Sub-w		S-127 (Spillway) S-129 (Pump)	S127 S129	Pump	Grab
Indian Prairie Sub-w		S-129 (Fullway)	S129	Gravity	Grab
Indian Prairie Sub-w		S-131 (Pump)	S129	Pump	Grab
Indian Prairie Sub-w		S-131 (Pullp) S-131 (Spillway)	S131 S131	Gravity	Grab
		FIGURE	FEGGER		
sheating Creek/Nicodemus Slough	Fisheating Creek	FISHCR	FECSR78	Gravity	Grab
West Lake Okeechobee	S-4 / Industrial Canal	EPD-07	EPD-07	Pump	Grab
West Lake Okeechobee	S-4 / Industrial Canal	S-310	S310	Gravity	Grab
West Lake Okeechobee	S-4 / Industrial Canal	S-169	S169	Gravity	Grab
West Lake Okeechobee	S-4 / Industrial Canal	S-4	S4	Pump	Grab
West Lake Okeechobee	S-4 / Industrial Canal	S-235	S235	Gravity	Grab
West Lake Okeechobee	East Caloosahatchee	S-77	S77	Gravity	Grab
West Lake Okeechobee	East Caloosahatchee	S-78	S78	Gravity	Grab
West Lake Okeechobee	East Caloosahatchee	CULV5A	CULV5A	Gravity	Grab
South Lake Okeechobee	EAA		See 40E-61, 1	F.A.C.	
South Lake Okeechobee	Ch 298 Districts	C-10	C-10	Pump	Grab (Note 3
South Lake Okeechobee	Ch 298 Districts	C-10 C-12	C-10	Pump	Grab (Note 3
South Lake Okeechobee	Ch 298 Districts	C-12A	C-12A	Pump	Grab (Note 3
South Lake Okeechobee	Ch 298 Districts	C-4A	C-12A C-4A	Pump	Grab (Note 3
		÷ 111	C 111	· · · · · · · · · · · · · · · · · · ·	1 2.00 (1100 2

Notes:

* A = autosampler primary method, grab sample back-up

(1) TP concentrations for S-5AW, S-5AS and S-5AE were calculated baed on the algorithm described in Appendix A.

(2) TP concentrations for City of WPB No. 2 are set to the cumulative basin flow-weighted mean inflow TP concentration.

(3) The EPD data is collected by daily grabs on flow composited for the sampling period. (J Madden e-mail 9/16/2011)

APPENDIX D – ESTIMATION OF NUTRIENT LOAD 6351 **REDUCTIONS RESULTING FROM IMPLEMENTATION OF** 6352 **COLLECTIVE SOURCE CONTROL PROGRAMS IN BASINS** 6353 WITH LOAD BASED PERFORMANCE MEASURES IN THE 6354 LAKE OKEECHOBEE WATERSHED 6355

6357 This appendix provides additional clarification on the technical sources, methods and assumptions for estimating source control effectiveness for the S-133, S-154, S-191, Lower 6358 Kissimmee, L-8, Indian Prairie, Fisheating Creek, S-4/Industrial Canal, and East 6359 Caloosahatchee basins. Details on the methods to estimate the nutrient reductions for the C-6360 44 Hydrologic Unit are described in Appendix A of Deliverable 6.1 "Data Analysis and 6361 Performance Measure Development for the St. Lucie River Watershed Source Control 6362 Program." (HDR, Inc. 2011). 6363 6364

6365 In order to estimate nutrient load reductions resulting from the implementation of the collective source control programs, reductions were developed for each land use based on 6366 technical documentation and expert best professional judgment. Reductions were estimated 6367 for BMPs and source control programs that were not implemented during the base period. To 6368 estimate the collective reduction, the reduction for each land use was weighted based on the 6369 6370 land use acreage and land use unit load. 6371

6372 For validation, land uses between the base period and the most current period for which land use breakdown is available were compared to determine if there were substantial differences 6373 affecting the weighted effectiveness. Loads between the base period and current conditions 6374 were also compared to determine if statistical differences existed that warranted adjustment, 6375 e.g., if land uses conversions did not appear substantial based on acreage but could have 6376 affected loading contributions. 6377 6378

6379 Finally, the nutrient load reduction percentage was rounded to the closest 5 percent increment recognizing the inherent uncertainty of the data. The nutrient loads after the reductions were 6380 applied were reviewed to determine whether these levels appeared reasonable based on 6381 reductions from other source control programs. 6382

6383

6386

6387

6388

6356

6384 The following information is presented in this report: 6385

- 1. Land use data for the historical and current conditions.
- 2. Unit area load coefficients that were used for this analysis and how they were developed through an iterative process beginning with their initial development in 2003 in support of the Lake Okeechobee Protection Plan through 2008 when they

6389	were modified for use in the St. Lucie River and Caloosahatchee Watershed River
6390	Protection Plans.
6391	3. Descriptions of the estimates of source control reductions utilized for each land use
6392	category and how they were developed in support of the watershed protection plans.
6393	4. Descriptions of how the appropriate land use data, unit area loads, and source control
6394	reductions for each land use category were used in spreadsheet models that calculated
6395	the total nutrient load reductions for each basin.
6396	
6397	Land Uses
6398	
6399	The initial step in this procedure was to determine the land use distribution for each basin for
6400	its base period, so that estimated land use specific unit total phosphorus (TP) loads could be
6401	applied. First, the availability and quality of the land use data had to be evaluated. A series
6402	of land use/ land cover (LCLU) maps have been produced by the South Florida Water
6403	Management District (SFWMD) since the early 1970s representing the following points in
6404	time:
6405	
6406	• 1972
6407	• 1988
6408	• 1995
6409	• 1999
6410	• 2004
6411	• 2008
6412	
6413	After reviewing these land use datasets, the 1995 dataset was selected for the reduction
6414	calculations. The 1995 land use coverage was nearest to the time range of the base periods
6415	(Table D-1). This dataset was complemented with data from the St. Johns River Water
6416	Management District and Southwest Florida Water Management District, for the Upper
6417	Kissimmee and Lake Istokpoga Sub-watershed areas outside the SFWMD boundaries.

6410

6419 Once the 1995 land use coverage for the entire Lake Okeechobee Watershed was completed,
6420 it was overlaid with the GIS coverages of the Okeechobee Sub-watersheds and summary
6421 basins in order to generate a detailed land use distribution table for each basin (see Excel
6422 spreadsheets LU_SummaryBasins.xlsx and LU_Watersheds.1995.xlsx in Attachment 1).
6423 Standard ArcMap tools were used to complete this task.

- 6424 6425
- 6426
- 6427
- 6428
- 6429

6430	Table D-1. Sub-watersheds	and Basins Performar	ice Measure Base Periods
	Sub-watershed	Basin	Base Period
		S-133	WY1977 – 1986
	Taylor Creek – Nubbin Slough	S-154	WY1977 – 1984
		S-191	WY1977 – 1988
	Lower Kissimmee	N/A	WY1977 – 1990
	East Lake Okeechobee	C-44	WY2000 - 2010
	East Lake Okeechobee	L-8 (C-10A)	WY1995 – 2003
	Indian Prairie	N/A	WY1989 - 2001
	Fisheating Creek-Nicodemus Slough	Fisheating Creek	WY1998 – 2008
	West Lake Okeechobee	S-4/Industrial Canal	WY1993 - 2001
	west Lake Okeechobee	East Caloosahatchee	WY1982 - 1990

Table D-2 provides the land use areas in each of the basins for 1995 and 2008. In general,
the land use that experienced the greatest decline in acreage was natural areas. The land use
with the greatest gain was urban. However, there were not substantial differences affecting
the weighted effectiveness between 1995 and the 2008 land use acreages, nor statistical
significant differences in the loads observed during the baseline periods, including those
dating back to 1977.

6438

6439 Unit Area Loads and BMP Effectiveness – Current Project

6440 The major parameters that this analysis depends on are TP unit area loads (UALs) for the 6441 various land uses. Percent reductions expected to result from source control measures on a 6442 particular land use are applied to the UALs for that land use. UALs represent the annual 6443 average nutrient loads per unit area discharged in runoff. The UALs are typically presented in lbs/ac/yr and are calculated by multiplying daily concentration by daily flow, summing 6444 6445 over the water year, and dividing by the land area of the respective land use. It is recognized 6446 that UALs will be different for each time period and for different areas with similar land uses 6447 due to many factors including variability in rainfall, runoff, nutrient soil concentrations, and management practices. However, the weighting effect of the UALs provides for a ratio of 6448 6449 contribution among the land uses, which can proportionally change from year to year. The 6450 combined effect of these variables is reflected in the observed UALs, Unit Area Flows 6451 (UAFs), and concentrations recorded at the monitoring locations for each basin.

6452

The UALs and source control reductions used in this analysis are based on those that were initially developed in 2003 (Bottcher and Harper, 2003) and then incrementally refined in subsequent reports (Bottcher, 2006 and SWET, 2008). The UALs have been based on the results of prior studies to the extent possible, but it was also necessary to apply expert best professional judgment. The iterative process of developing the UALs used for this analysis is described below.

.ċ
ä
2
-9
Ŭ.
2
ĩ
8
Q.
ŝ
π
5
-
8
8
S
ű.
6
띆
Ň
Ó.
Q.
ā
Ľ.

Land use	S-133	33	S-154	54	S-191	91	Lower Kissimmee	simmee	L-8	8	Indian Prairie	Prairie	Fisheating Greek	g Greek	S-4/Ir	S-4/Industrial Canal
Absorber of Tree Oren	1955	2002		2002	066T	2008		2005		2008	CEFT C	2010		2002		2008
Apandoned Tree Crops	-		-	2,	-	nc≯		17	5	2,1/3	-	13		n		
Aquaculture	=	<u>م</u>	5	-	3	95	0	24	5	-	202	aub	90	62	5	-
Cattle Feeding	0	0	0	0	0	628	0	498	0	0	0	0	0	0	0	0
Operations	150	0.01	-	6	0 780	2 768	10 103	10.064	8 003	113	30 756	30.167	11 000	7 554	151	02
5000	CPT	777	,	,	77.177	2,100	67777	100'01		777		OT OF	11,020			6
Communications and Utilities	0	43	0	0	73	76	0	37	2,248"	1,443	0	19	91	14	170	107
Dairies	20	0	1,728	767	6,848	3,494	4,347	1,796	0	0	393	o	0	18	34	0
Fallow Crop Land	0	0	158	0	589	86	1,370	429	345	2,441	1,182	1,170	725	741	42	0
Field Crops	0	355	420	817	1,418	3,397	2,674	15,540	0	33	2,143	393	1,817	732	72	0
Field Crops -	0	0	0	•	0	0	0	0	6,094	9,751	0	19,207	0	ы	31,929	32,371
Sugarcane																
Horse Farms	0	143	109	38	54	240	609	265	285	360	53	25	20	0	0	0
Improved Pasture	10,864	8,524	17,020	17,921	60,013	67,590	133,849	128,001	0	489	120,064	121,134	81,933	95,152	1,859	883
Natural Areas ²	4,615	3,371	5,942	5,234	27,592	15,230	149,724	95,431	65,818	62,929	64,512	44,547	119,120	96,855	2,285	2,011
Ornamentals	0	16	0	0	68	51	12	17	7	158	6	55	164	391	35	19
Other Groves	0	ŝ	0		0	60	0	თ	0	•	15	53	9	41	20	0
Poultry Feeding	0	0	0	0	0	72	0	0	0	0	0	40	0	ŝ	0	0
Operations																
Residential High Density	624	60	136	0	0	0	33	25	0	0	96	D	0	0	0	75
Residential Low Density	1,729	1,666	2,054	1,374	4,597	4,786	1,883	4,152	18,998	20,049	2,279	1,874	2,280	2,275	345	574
Constantial Marchine		204 0	16.4	10F	000	0.00	190	LC LC	i n	0	000	500		001	1 70	F03 *
Residential Medium Density	11677	96/*7	104	12/	200	747	130	n n	1/1	10/	308	T n		130	T, 124	1501
Row Crops	0	0	378	ŋ	1,897	262	5,033	5,166	23	21	1,694	1,168	995	19	156	0
Sod Farms	0	1,521	0	0	0	0	267	0	0	0	2,086	0	555	737	179	0
Transportation	653	222	305	156	52	314	2,834	239	0	6	446	127	775	610	350	330
Tree Plantations	0	O	0	0	0	55	11,031	58	0	0	59	404	24,471	19,718	0	0
Unimproved Pastures	862	1,078	323	2,091	6,858	6,603	21,889	43,295	2,337	33	30,285	24,212	21,033	35,908	0	0
Urban ³	1,741	2,751	287	354	291	839	1,128	50,816	147	364	976	970	100	293	1,240	2,363
Water	981	762	195	133	1,675	654	4,297	3,283	1,074	2,862	4,360	2,887	965	808	1,428	739
Woodland	397	2,147	2,297	1,881	2,957	11,331	76,837	69,986	86	1,723	14,660	27,081	32,395	36,186	51	445
rastures/kangeland																
³ The landuse acreages for the C-44 basin are reported	he C-44 ba	sin are re _l	ported in A	\ppendix #	\ of Delive	able 6.1 "	Data Analys	is and Perfo	irmance M ₆	easure Dev	/elopment f	or the St. Lu	de River Wat	ershed Sou	rce Control	in Appendix A of Deliverable 6.1. "Data Analysis and Performance Measure Development for the St. Lucie River Watershed Source Control Program" (HDR Inc.
2011).																
² Indudes all categories that comprise Natural Areas except Water (FLU CCS Code 5000).	comprise	Natural A	reas excep	it Water (F	ILLOCS Col	Je 5000).										
³ Indudes all categories that comprise Urban except the Residential landuses (FLUCCS Code 1100, 1200, and 1300).	comprise	Urban ex	cept the Re	sidential	anduses (F	ILLOCS CO.	de 1100, 12	00, and 130	10).							
)	-		-													

induces an categories use compresent acception representation and uses (trows and story). than zero, so the acreages listed in this table refect the original L& transportation acreage minus the acreage that Basin %'s transportation landuse consisted of.

Technical Support Document Lake Okeechobee Watershed Performance Measures

6460 Letter Report Entitled: Estimation of Best Management Practices and Technologies 6461 Phosphorus Reduction Performance and Implementation Costs in the Northern Lake 6462 Okeechobee Watershed, October 2003 (Bottcher and Harper, 2003)

6463

6464 This letter report contained estimates of UALs for agricultural and urban land uses and estimates of TP load reductions that could be expected to result from implementation of best 6465 management practices (a.k.a. source control programs). The information presented in the 6466 report was based on prior studies to the extent possible. However, due the limitations of 6467 6468 available documentation, it was also necessary to apply the expert best professional judgment of the authors, Dr. Del Bottcher and Dr. Harvey Harper. The UALs and TP load reductions 6469 6470 were developed based on conditions that existed for the 2003 timeframe and are presented in 6471 Table D-3 (see the column labeled, "Existing Unit Load (lbs-P/ac/yr").

6472

6473

- 6474
- 6475
- 6476

Table D-3. Table 1 From Bottcher and Harper, 2003: Estimates of TP UAL and loadreductions expected from implementation of source control programs in the LakeOkeechobee Watershed.

FLUCCS Description	Acres	% of Total Landuse Area	Existing Unit Load	Total P	Estimated	Total P after
Primary Agricultural Land Use			(lbs-P/ac/yr)	Load (tons)	% Reduction	Reduction (tons)
Improved Pastures	431,391	36.24%	0.72	155	30	109
Unimproved Pastures	70,927	5.96%	0.27	10	20	8
Woodland Pastures	8,652	0.73%	0.27	1	20	1
Rangeland	110,579	9.29%	0.23	13	20	10
Urban	27,280	2.29%	0.66	9	30	6
Dairies	29,084	2.44%	3.38	49	32	33
Citrus	54,763	4.60%	1.62	44	40	27
Field Crops - Sugarcane	16,586	1.39%	0.63	5	25	4
Sod Farms	10,652	0.89%	2.52	13	40	8
Row Crops	7,024	0.59%	6.30	22	60	9
SUM OF "Primary Ag Land Uses"	766,938	64.43%	Subtotal	322	33	215
Other Land Uses						
Field Crops	3,000	0.25%	0.50	1	10	1
Fruit Orchards	6,665	0.56%	0.50	2	10	1
Other Groves	16	0.00%	0.50	0	10	0
Poultry Feeding Operations	49	0.00%	0.50	0	10	0
Tree Nurseries	411	0.03%	0.50	0	10	0
Ornamentals	7,320	0.61%	0.50	2	10	2
Floriculture	21	0.00%	0.50	0	10	0
Horse Farms	310	0.03%	0.50	0	10	0
Aquaculture	833	0.07%	0.50	0	10	0
Fallow Crop Land	2,477	0.21%	0.50	1	10	1
Upland Forests	115,989	9.74%	0.50	29	0	29
Pine Plantation	32,600	2.74%	0.18	3	11	3
Water	12,966	1.09%	0.50	3	0	3
Wetlands	224,117	18.83%	0.50	56	0	56
Barren Land	10,646	0.89%	0.50	3	0	3
Transportation, Communication, and Utilities	5,907	0.50%	0.50	1	0	1
Special Classifications	0	0.00%	0.50	0	0	0
SUM OF "Other Land Use"	423,326	35.57%	Subttotal	101	1	100
Grand Total	1190264	100.00%		423	25	314

6477 6478

6479 6480

6482 Letter Report Entitled: Phosphorus Reduction Performance and Implementation Costs 6483 under BMPs and Technologies in the Lake Okeechobee Protection Plan Area, August 6484 2006 (Bottcher, 2006)

6485

6490

6491

6492

6493

6494

6495 6496

6497

6501

6502

6503

6504

6486 In 2006, the work performed in the 2003 Letter Report (Bottcher and Harper) was re6487 evaluated and refined. A workshop was held with experts having specific knowledge of
6488 agricultural practices and water quality in the Lake Okeechobee Watershed. The following
6489 individuals participated:

- Dr. Joyce Zhang, SFWMD
- Drs. Don Graetz and Tom Obreza (Soil Science, University of Florida (UF))
- Drs. Roger Nordstedt, Ken Campbell, and Sanjay Shukla (ABE, UF)
- Dr. Ed Hanlon (Director, SWFREC, UC)
 - Dr. Patrick Bohlen, Director of Research, MacArthur Agro-ecology Research Center
- Dr. Ike Ezenwa (Agronomy, UF) was not present at the workshop but provided input afterwards on sand-land sugarcane production practices.

6498 The workshop participants agreed upon the following refinements to UALs and estimates of6499 source control TP load reductions.6500

- 1. Table 1 from the 2003 letter report was reorganized to eliminate confusion for the listed primary land uses. Also, one of the land uses "ornamentals", which was previously under "other land uses", was considered significant enough to be analyzed separately during this assessment.
- 6505
 2. The stormwater retention and wetland restoration BMPs were separated with significantly less emphasis being placed on wetland restoration P reductions due to recent field data that showed these restoration projects are less effective than originally thought. Two important assumptions were: 1) stormwater retention systems will not impact in-field water tables, and 2) retention ponds are not constructed on fields with historical high P levels or if they are, the land is treated with alum prior to flooding.
- 6512
 3. New UALs and BMP reductions were developed for "unimproved pastures" to differentiate them from "range/woodland pastures". The workshop group agreed that the typical definition of unimproved pasture has animal densities and grass and fertility practices somewhere in between the improved and range/woodland pastures categories. Table values were adjusted accordingly.
- 4. The land use category of "ornamentals" was added and assumed to be an intensive ornamental nursery operation, but it is recognized that ornamental field crops, such as caladiums, may also be mapped under this category. It was suggested that the "row crops" land use category include ornamental field crops.

- 6521
 6522
 6523
 5. An assessment table for the land use category of field crops was added and assumed to be a hay field that is fertilized with P. The workshop group helped develop estimates for existing and BMP P reduction and cost estimates.
- 6. The workshop group found the previous P fertilizer rates for "citrus" to be high because P fertilization on citrus typically only occurs over the first few years after planting. This change significantly reduced the potential P reductions for the fertility BMP.
- 6528
 6529
 6530
 7. A "natural areas" category was broken out from "other land uses" and included, "upland forests", "water", "wetlands", "barren land", "open land", "transportation, communication, and utilities", and "special classifications" land use categories.
- 8. There were a few other minor changes made to TP reduction ranges and typical values and the estimated costs of implementation suggested by the workshop group.
 Most of these changes were associated with stormwater retention and the fertility BMP.
- 6535
 9. An assessment table was also developed for the urban land use category because of this land use's importance in any watershed BMP implementation programs.
 6537

6538 Table D-4 presents the UALs and TP load reductions expected to result from implementation
6539 of source control programs developed in the 2006 report. It addresses the northern Lake
6540 Okeechobee Watershed, except for the Upper Kissimmee Sub-watershed.

Table D-4. Table 1 From Bottcher, 2006, UALs and TP reductions.

				Owner	Typical	
			Unit Load	Implemented	Cost Share	
Landuse Category	FLUCCS	FLUCCS Description	(lbs/acre/ yr)	BMPs (1)	BMPs	Practices
Urban	1009	Mobile Home Units				
	1100	Residential Low Density				
	1200	Residential Medium Density				
	1300	Residential High Density				
	1400	Commercial and Services	0.66	3%	0%	0%
	1500	Industrial				
	1600	Extractive				
	1700	Institutional				
	1800	Recreational				
Improved Pastures	2110	Improved Pastures	0.72	11%	19%	49%
Unimproved Pastures	2120	Unimproved Pastures	0.49	7%	13%	44%
Woodland Pastures/Rangeland	2130/3000	Woodland Pastures/Rangeland	0.27	4%	6%	35%
Row Crops	2140	Row Crops	6.30	30%	30%	50%
Sugarcane	2156	Field Crops - Sugarcane	0.63	10%	23%	52%
Citrus	2210	Citrus	1.62	12%	20%	42%
Sod / Turf	2420	Sod Farms	2.52	20%	27%	50%
Ornamentals	2430	Ornamentals	4.10	32%	35%	50%
Dairies	2520	Dairies	3.38	9%	28%	48%
Pine Plantations	4400	Tree Plantations/Pine	0.18	1%	10%	50%
Dairies in non-priority basins		Dairies in Istokpoga and Caloosahatchee	0.17	2%	30%	48%
· · ·	4000	Upland Forests (not including 4400's)				
	5000	Water				
	6000	Wetlands				
Natural Areas	7000	Barren Land	0.20	0%	0%	0%
	1900	Open Land				
	8000	Transportation, Communication, and Utilities				
	9000	Special Classifications				
	2150	Field Crops				
	2230	Other Groves				
	2220	Fruit Orchards				
	2320	Poultry Feeding Operations				
Other Areas	2410	Tree Nurseries	0.70	10%	0%	0%
	2450	Floriculture				
	2510	Horse Farms				
	2540	Aquaculture				
	2610	Fallow Crop Land				

6544 6545

Nutrient Loading Rates, Reduction Factors and Implementation Costs Associated with BMPs and Technologies, July 2008

6548

6549 This report was prepared in support of the St. Lucie River and Caloosahatchee River Watershed Protection Plans. Its purpose was to estimate TP and total nitrogen (TN) load 6550 6551 reductions in both watersheds that could be expected to result from implementation of source control programs. Seven additional land use categories were added to replace the "urban" 6552 category; "low density residential", "medium density residential", "high density residential", 6553 "horse farms", "transportation", "utilities", and "other urban". This created a total of 20 land 6554 use categories. Land uses were further broken down within the 20 primary categories for 6555 refinement of UALs. However, the final results were reported by aggregating the results of 6556 6557 the individual land uses into the 20 primary categories.

Initial UALs were based on those developed by Bottcher (2006) as described above, general
Florida estimates by Harper and Baker (2003 and 2007), and data collected within the St
Lucie River Watershed by Graves, et al (2004). Since UALs are a function of both
concentration and flow, it was first necessary to establish reasonable unit area runoff (UAR)
coefficients in inches/acre/year for each land use category (Harper and Baker, 2007). The
resulting calculated average annual runoff for the period 1995 – 2005 was within 1% of the
measured flow volume from the watershed to the St Lucie Estuary.

6566

6567 The final TP UALs were developed by iteratively adjusting the initial UALs using a spreadsheet to calculate the total loads from the watershed based on the UALs, and land use 6568 6569 acreages. The UALs were iteratively adjusted until the calculated and measured values for 6570 flow, load, and concentration were reasonably close. Adjustments to the TP UALs were made for individual land uses, and then a global adjustment factor was used to obtain a 6571 reasonable agreement between the calculated and measured values. Tables D-5 and D-6 6572 present TP UALs used in the development of the St. Lucie River and Caloosahatchee River 6573 Watershed Protection Plans, respectively. 6574

6575

6576 The primary sources of agricultural BMP information were research and extension reports 6577 completed by Institute of Food and Agriculture Sciences, University of Florida (IFAS, UF) in 6578 association with various state agencies and grower groups, while urban BMP information 6579 was primarily from summary reports by Environmental Research and Design, Inc. and University of Central Florida. For citrus, the studies by Brian Bowman and David Calvert at 6580 the Indian River Research and Education Center and Ashok Alva and S. Paramasivam at the 6581 6582 Citrus Research and Education Center were primarily used. For cow-calf production, studies 6583 by Paul Mislevy and F.G. Martin at the Cattle Research Station in Ona and by Joyce Zhang, Jeff Hiscock, Del Bottcher, B.M. Jacobson, and Patrick Bohlen at Buck Island Ranch were 6584 6585 primarily used. Vegetable production BMPs were reviewed from research studies across the state, but focused mostly on work out of IFAS' Gulf Coast (Immokalee) and the old 6586 Bradenton Research and Education Centers. 6587 6588

6589 Though many of the research studies focused more on crop production responses to 6590 management practices as opposed to water quality responses, their results were very useful in 6591 bracketing the economical feasibility limits for BMPs. To further access the actual water 6592 quality responses, both field studies and hydrologic transport modeling were evaluated. The 6593 Watershed Assessment Model (WAM) model has been used extensively in the Okeechobee 6594 and Caloosahatchee basins to estimate water quality responses to BMPs which may not have 6595 been specifically addressed in the field studies.

6596

A report developed by Dr. Harvey Harper (2003) for the northern Lake Okeechobee
watershed was primarily used for the urban BMPs responses for TP. Load reductions were
estimated on the assumption that specific source controls were being implemented, as

described below for the land use categories with the largest acreage in the watershed (Table D-7). SWET (2008) indicates that these source control measures (BMPs) represent what would be expected to be implemented through a reasonably funded cost share program or a modest regulatory approach. The expected reductions from the ten most common land uses in the Lake Okeechobee Watershed and the expected nutrient reductions from those land use types are listed in Table D-8.

Table D-5. Table 3 from SWET, 2008, Unit Area Loads.

,,	It is and i coads and concern	1		Unit N		1	
Land Use Category	Land Use Description	FLUCCS	Runoff	Load	N Conc.	Unit P Load	P Conc.
			(in∆r))	(mg/l)	(lbs/acre/yr)	(mg/l)
Residential Low Density	Residential Low Density	1100	17.57	4.95	1.25	0.49	0.12
Residential Medium Density	Residential Medium Density	1200	20.76	7.20	1.53	1.40	0.30
Residential High Density	Residential High Densit/	1300	23.96	10.80	1.99	3.00	0.55
Other Urban	Commercial and Services ²	1400	25.55	9.90	1.71	1.40	0.24
	Industrial ²	1500	27.15	9.00	1.47	2.40	0.39
	Extractive ²	1600	23.96	6.30	1.16	0.66	0.12
	Institutional ²	1700	23.96	6.30	1.16		0.44
	Recreational ²	1800	17.57	6.30	1.59	0.96	0.24
Improved Pastures	Improved Pastures	2110	19.16	9.99	2.30		0.44
Unimproved Pastures	Unimproved Pastures	2120	15.97	4.95	1.37	0.92	0.25
Woodland Pastures/Rangeland	Woodland Pastures	2130	15.97	3.69	1.02	0.88	0.24
	Rangeland	3000	15.97	3.69	1.02	0.28	0.08
Row Crops	Row Crops	2140	22.36	13.50	2.67	4.50	0.89
Sugar Cane	Sugar Cane	2156	19.16	7.20	1.66	0.63	0.15
Citrus	Citrus	2210	19.16	7.65	1.76	1.80	0.42
Sod Farms	Sod Farms	2420	19.16	8.10	1.87	2.52	0.58
Ornamentals	Ornamentals	2430	19.16	10.80	2.49	2.90	0.67
Horse Farms	Horse Farms	2510	15.97	14.40	3.99	1.82	0.50
Dairies	Dairies	2520	15.97	18.00	4.98	9.38	2.60
Other Areas	Field Crops	2150	15.97	5.96	1.65	2.96	0.82
	Mixed Crops	2160	19.16	9.90	2.28	3.50	0.81
	Fruit Orchards	2220	19.16	8.10	1.87	2.30	0.53
	Other Groves	2230	19.16	8.10	1.87	2.30	0.53
	Cattle Feeding Operations	2310	19.16	48.65	11.22	8.96	2.07
	Poultry Feeding Operations	2320	19.16	9.00	2.08	1.50	0.35
	Tree Nurseries	2410	15.97	10.80	2.99	2.90	0.80
	Specialty Farms	2500	15.97	7.20	1.99	1.82	0.50
	Aquaculture	2540	7.99	9.00	4.98	0.70	0.39
	Fallow Crop Land	2610	19.16	6.30	1.45	0.70	0.16
Tree Plantations	Tree Plantations	4400	15.97	2.79	0.77	0.18	0.05
Water	Water	5000	3.19	0.81	1.12	0.05	0.07
Natural Areas	Upland Forests (not including 4400's)	4000	14.37	2.25	0.69	0.28	0.09
	Wetlands	6000	1.60	1.35	3.74	0.01	0.03
	Barren Land	7000	23.96	6.30	1.16	0.75	0.14
	Open Land	1900	15.97	3.60	1.00	0.28	0.08
Transportation	Transportation	8100	27.15	8.28	1.35	1.65	0.27
Communication/Utilities	Communications	8200	15.97	5.40	1.49	0.48	0.13
	Utilities	8300	15.97	5.40	1.49	0.48	0.13

1 Assumed on Septic

6609

2 Assumed Discharge from VVVT outside basin

Table D-6. Table 12 from SWET, 2008, Unit Area Loads.

Table 12. Estimated Runoff, Unit N and P Loads and Concentration for 2004 Land Uses in the Caloosahatchee Watershed

Land Use Category	Land Use Description	FLUCCS	Runoff (in/yr)	Unit N Load (lbs/acre/yr)	N Conc. (mg/l)	Unit P Load (lbs/acre/yr)	P Conc. (mg/l)
Residential Low Density	Residential Low Density	1100	27.43	7.26	1.17	0.68	0.11
Residential Medium Density	Residential Medium Density ²	1200	32.42	10.56	1.44	1.93	0.26
Residential High Density	Residential High Density	1300	39.90	15.84	1.75	4.14	0.46
	Commercial and Services ²	1400	39.90	14.52	1.61	1.93	0.21
	Industrial ²	1500	42.39	13.20	1.38	3.31	0.35
	Extractive ²	1600	37.41	9.24	1.09	0.91	0.11
	Institutional ²	1700	37.41	9.24	1.09	12,312 1	0.39
Other Urban	Recreational ²	1800	27.43	9.24	1.49		0.21
Improved Pastures	Improved Pastures	2110	29.93	14.65	2.16		0.29
Unimproved Pastures	Unimproved Pastures	2120	24.94	7.26	1.29		0.18
	Woodland Pastures	2130	24.94	5.41	0.96	de la companya de la comp	0.15
Woodland Pastures/Rangeland	Rangeland	3000	19.95	5.41	1.20	0.25	0.06
Row Crops	Row Crops	2140	34.91	19.80	2.51	3.45	0.44
Sugar Cane	Sugar Cane	2156	29.93	10.56	1.56	0.55	0.08
Citrus	Citrus	2210	29.93	11.22	1.66	0.90	0.13
Sod Farms	Sod Farms	2420	29.93	11.88	1.75	2.79	0.41
Omamentals	Ornamentals	2430	29.93	15.84	2.34	4.00	0.59
Horse Farms	Horse Farms	2510	24.94	21.12	3.74	2.51	0.45
Dairies	Dairies	2520	24.94	26.40	4.68	12.94	2.29
	Field Crops	2150	24.94	8.74	1.55	4.09	0.73
	Mixed Crops	2160	29.93	14.52	2.14	4.83	0.71
	Fruit Orchards	2220	29.93	11.88	1.75		0.47
	Other Groves	2230	29.93	11.88	1.75	3.17	0.47
	Cattle Feeding Operations	2310	29.93	71.35	10.54	12.37	1.83
	Poultry Feeding Operations	2320	29.93	13.20	1.95	2.07	0.31
	Tree Nurseries	2410	24.94	15.84	2.81	4.00	0.71
	Specialty Farms	2500	24.94	10.56	1.87	2.51	0.45
1947-1714 M	Aquaculture	2540	12.47	13.20	4.68	8	0.34
Other Areas	Fallow Crop Land	2610	29.93	9.24	1.36	0.97	0.14
Tree Plantations	Tree Plantations	4400	14.96	4.09	1.21	0.21	0.06
Water	Water	5000	4.99	1.19	1.05	0.07	0.06
	Upland Forests (not including 4400's)	4000	14.96	3.30	0.97	0.10	0.03
	Wetlands	6000	7.48	1.98	1.17	0.01	0.01
	Barren Land	7000	37.41	9.24	1.09	1.04	0.12
Natural Areas	Open Land	1900	24.94	5.28	0.94	0.39	0.07
Transportation	Transportation	8100	49.88	12.14	1.08	2.28	0.20
	Communications	8200	27.43	7.92	1.28	0.66	0.11
Communication/Utilities	Utilities	8300	24.94	7.92	1.40	0.66	0.12

1 Assumed on Septic

2 Assumed about 70% of Discharge from WWT outside basin

0.5% 0.2% n12% 0.2% n12% 1.53 call testing n1 1.57 call with 1.53 call testing 1.15 1.55 call testing 1.15 1.15 call testing 1.15 1.15 call testing 1.15 1.15 call testing 1.16 1.15 call testing 1.17 1.15 call testing 1.18 1.15 call testing 1.18 <td< th=""><th>Land Use</th><th>Jse</th><th>Citrus</th><th>Improved Pastures</th><th>Resil ential and Urban</th><th>Dairies</th><th>Other agriculture</th></td<>	Land Use	Jse	Citrus	Improved Pastures	Resil ential and Urban	Dairies	Other agriculture
2018 46 % 21.4 % 13.0 % 0.2 % 2016 Typecdi 7.5 coll testing 7.5 co	Watershed	1995	7.0%	22.4%	% 6'9	0.5%	18.3%
Typecal: Typecal: Typecal: P. Soll testing includes implementation includes includes implementation includes includes implementation includes includes implementation includes includes implementation includes includes includes implementation includes includes implementation includes includes implementation includes includes includes includes includes im	acreage Percentage	2008	4.6 %	21.4%	13.0%	0.2 %	23.3 %
Typical: Typical: Typical: Typical: Stom wate Stom wate Typical: Typical: Stom wate Wetland restoration Wetland restoration detention/retention because Wetland restoration US3 inth) and wet of improved inigation and Wetland restoration US3 inth) and wet of improved inigation and Wetland restoration Improved inigation and Drainage isystems Wetland restoration Retention (0.25 inth) systems Wetland restoration Prescal: isystems Wetland restoration Prescal: isystems Wetland restoration ERP permitted systems Wetland restoration Prescal: Wetland restoration Stomwater Expanded wast storage ponds ising Extended sprayfields Expanded sprayfields of thereition/retention Stom water detention Stom water detention ponds Grass management will Stom water detention figh Budi Grass management will Stom water detention figh Budi Stom water detention Stom water detention figh Budi Grass ma	Nutrient	gt M	Typtcal: P: Soil testing Includes supplementation to cosolids rule correctied application (timing & placement, fartigation) Figh End: Spill prevention High End: Slow release fertilizer	 Typical: P.: Soil testing Includes implementation of biosoids rule, the animal manue implementation nule, and the septage spplication rule Spill prevention Grass maragement² and Grass maragement³ and <	Typical: Reduced Fertization in accordance with the U rban Turf Fertilizar Rule Controlled application (iming & placement) Spill prevention High Evd: Florida Friendly Landscape	Typical: • P:S all testing • Includes implementation of the CAFO rule, • Feed management Grass management [*] and rotational grazing • Improved forage/sprayfield management - P belanced with high Puptake crop rotations <i>High Eval</i> : • Solids separation for offsite disposal • Add housing to move animals off <i>field</i>	Typucal: P.: Soul testing Includes implementation of biosodids rule C controlled application (timing & placement, fettigation) S pill prevention <i>High Buci</i> Slow release fertilizer
Typecal: Typecal: • Grass management • Buffer strips • between trees N de: Grass management will • Sedim ent treps also apply to particulate mather • Street sweeping N de: Grass management will • Street sweeping N de: Grass management will • Street sweeping N de: Grass management will • Street sweeping N de: Grass management and improved • Street sweeping • Buffer strips • Grass management and improved • Grass management and improved • Grassed swales onthols	Water h	ta M	Typreal: Storm water detention/reteration because of imperved RTP permitted drainage or ERP permitted systems fligh End: Water reuse from evising retention/detention ponts Ponts	Typical: • Wetland restoration • Retention basin by working pens High Bud: • Stomwater detertion/retention	Typical: Dry detertion swales (0.25 inch) and wet detention (0.25 inch) High Evd: ERP permitted systems, when required required required for dry detertion and wet detertion	Typical: Improved Irrigation and Drainage Management Well and restoration <i>High Eval</i> : Expanded waste storage ponds Expanded spreyfields Storm water detentionfreteration	Typical: Stom water detertion/retention because of improved irrigation anddrainage, flooded fields, and riser board control or ERP permitted systems <i>High Bud</i> • Wetlandr estoration
	Particulate and Sedin Contro	M atter ment vls	Typucal: • Grass management between trees • Sediment traps High End: • Grassed swales	N ote: Grass management will also apply to particulate matter and sediment controls	Typical: Street sweeping Sediment/oaffle boxes	Typical: • Buffer strips Note: Grass nanagement and improved for age/sprayfield management will also apply to particulate matter and sediment controls	<i>Typical:</i> • Cover crops • Sediment traps

Table D.7. BMPs assumed to be imp lemented for estimates of nutrient bad reductions (based on Bottcher 2008) 1 .

Table D-8. Reduction values from the top 10 land uses based on Bottcher 2006 and SWET 2008 reports

Land Use	Expected Typical TP Reduction
Natural Areas	0
Improved Pasture	30
Urban ¹	10
Citrus	32
Rangeland	20
Unimproved Pasture	10
Sugarcane	33
Tree Plantations	11
Dairies	37
Row Crops	60
¹ CWET 2000	

¹SWET 2008.

6619 6620

6621 Lake Okeechobee Watershed TP UALs and BMP Effectiveness 6622

A spreadsheet model, consistent with the models developed for the Lake Okeechobee,
Caloosahatchee River, and St. Lucie River Watershed Protection Plans, was used to calculate
nutrient loads and reductions that could be reasonably expected from implementation of
collective source control programs. The spreadsheet applies the unit area flow and unit area
load for each land use to respective land use areas and sums them to calculate basin flows
and loads, as indicated below:

- 6629 The unit area flow coefficients (expressed in inches/year) developed for each land use 6630 in the SWET 2008 report were used as a starting point for this analysis. The unit area flow coefficients were adjusted based on expert best professional judgment for Lake 6631 Okeechobee. The unit area flow coefficients were developed to represent the relative 6632 6633 differences in flows that would be discharged from each land use. The unit area flow coefficient was multiplied times the number of acres of the corresponding land use to 6634 6635 calculate the total flow from each land use. The computed flows from all land uses were then added to calculate the flows from the sub-watershed. A global adjustment 6636 6637 factor was applied to each land use coefficient so that the calculated flows matched 6638 the measured flows for the sub-watershed.
- The UALs developed for each land use in the SLRWPP from Bottcher 2008 report were used as a starting point for this analysis. The unit area load coefficients were adjusted based on expert best professional judgment. The UAL coefficients used in this analysis were developed to represent the relative differences in nutrient loads that would be discharged from each land use. For example, a land use with a unit area

6646

6651

load of 1 lb/acre/year would discharge half the nutrient load compared to a land use with a UAL of 2 lb/acre/year.

6647 Since load is a function of flow and concentration, the unit area loads for a given land use 6648 will vary temporally due to variations in rainfall and flow. The average annual flow and 6649 nutrient load measured during the base period were used to adjust the simulated loadings for 6650 each basin.

Adjustment Factors to Account for Differences in Source Control Implementation for Current and Base Period Conditions

6655 The estimates of source control nutrient load reductions developed in Bottcher 2006 and 6656 SWET 2008 were based on reductions that could be achieved relative to current conditions. i.e., 1990s forward. For a number of basins, the base periods selected were for a time period 6657 prior to BMP implementation which was prior to 1990. Therefore, Dr. Bottcher provided a 6658 range of reductions that also considered the historical base periods. The consulting team and 6659 the District reviewed reduction ranges for the historical periods and the Bottcher 2006 and 6660 6661 SWET 2008 assumptions and reduction estimates. The reductions were adjusted as appropriate to account for differences in source control implementation to determine the 6662 6663 recommended value to be used. 6664

- The S-133, S-154, and S-191 required adjustments due to the extent of source controls that have been in place since the respective base periods. For example in the S-191 Basin, source controls on dairies began in the 1970s. In 1987, the FDEP Dairy Rule required additional source controls on dairies and in 1989, the Lake Okeechobee Works of the District program began requiring phosphorus control on other land use types. The adjustments accounted for the reductions from these programs.
- The base period for C-44, L-8, Indian Prairie, Fisheating Creek, S-4/Industrial Canal, and East Caloosahatchee were all more recent periods and/or areas with more limited BMP implementation. Therefore, the source control reductions for typical BMPs developed in the Bottcher 2006 and SWET 2008 reports were used without adjustment for these basins.
- 6676
 The Lower Kissimmee had a mix of BMP implementation with earlier implementation in the southern portion but very limited implementation in the northern portion so no adjustment was applied.
- 6680 The range of recommended reductions and the recommended reductions for each basin
 agreed upon by the consulting team and the District is shown in Table D-9; the spreadsheets
 associated with the recommended reductions are included in Attachment 1.
- 6683

6684	Table D-9. Range of phosphorus load percent reductions relative to the base period
6685	anticipated for each basin.

6688 6689

6690

6691 6692

Basin	Low Reduction, %	High Reduction, %	Typical Reduction, %	Recommended Reduction, %
S-133	8	54	38	25
S-154	41	81	68	35 ⁽¹⁾
S-191	42	82	69	40 ⁽¹⁾
Lower	22	72	55	30
Kissimmee				
C-44	9	51	33	35
L-8	19	51	32	20
Indian Prairie	16	62	41	30
Fisheating Creek	12	51	28	30
S-4/Industrial Canal	16	54	32	30
East Caloosahatchee	33	70	50	30

⁽¹⁾These two basins are heavily influenced by dairy land use. The team decided to recommend a reduction below the low end of the range because BMPs such as chemical treatment for dairies were considered when the range was developed and these are not be considered to be a requirement for a regulatory program.

6693 Validation of Measured and Simulated Flows and Loads 6694

6695 The nutrient load discharged from an acre of any land use will not necessarily equal the load 6696 that reaches the receiving water. There are many potential reasons for this difference. For 6697 example, in-stream assimilation can significantly reduce the nutrient load after it flows from the source and before it reaches the receiving water, particularly if the flow distance is long 6698 and the stream is shallow with overbank wetlands. Another example is that surface water 6699 6700 may be used for irrigation as it travels downstream from its source to the monitoring location 6701 at the sub-watershed outlet. The parcel to catchment adjustment factor may also account for variations in soil types and nutrient soil concentrations associated with the sub-watershed. 6702 6703 The Unit flows and UALs are at the parcel level. To account for these differences, a parcel to 6704 basin adjustment factor was estimated for to determine the difference between basin 6705 measured and the parcel simulated flows and loads. While some attenuation is expected 6706 between the parcel and basin discharge levels (parcel loading based on unit flow and UAL and observed acreage, and basin loading based on measured data), the greater the difference, 6707 would suggest the higher uncertainty in the calculations. 6708

6709 **References** 6710

- 6711 Bottcher and Harper. 2003. Estimation of Best Management Practices and Technologies
 6712 Phosphorus Reduction Performance and Implementation Costs in the Northern
 6713 Watershed of Lake Okeechobee. Letter report to South Florida Water Management
 6714 District, West Palm Beach, FL.
- 6716 Bottcher, A.B. 2006. Phosphorus Reduction Performance and Implementation Costs under
 6717 BMPs and technologies in the Lake Okeechobee Protection Plan Area. Letter Report to
 6718 South Florida Water Management District, West Palm Beach, FL.
 6719
- 6720 Graves, Gregory A., Yongshan Wan, and Dana L. Fike. 2004. Water Quality
 6721 Characteristics of Storm Water from Major Land Uses in South Florida. *Journal Of The*6722 *American Water Resources Association*. Paper No. 03194. 1405:1419.
- 6724 Harper, H. H. 2003. Evaluation of Runoff Load Reductions from Urban Land Uses.
 6725 Submitted to South Florida Water Management District as Attachment 2 to the Bottcher
 6726 and Harper Letter Report (Bottcher and Harper, 2003).
 6727
- 6728 Harper, H. H. and D.M. Baker. 2007. Evaluation of Current Stormwater Design Criteria
 6729 within the State of Florida. Final Report prepared by Environmental Research and Design
 6730 for the Florida Department of Environmental Protection, Tallahassee, FL.
- HDR Engineering, Inc. 2011. Data Analysis And Performance Measure Development For
 The St. Lucie River Watershed Source Control Program; Deliverable 6.1 Collective
 Source Control Performance Measures for St. Lucie River Watershed Technical Report,
 prepared for the South Florida Water Management District, September 2011.
- 6735 SFWMD (South Florida Water Management District). 2011. South Florida Environmental
 6736 Report. West Palm Beach, FL.
 6737
- 6738 SWET (Soil and Water Engineering Technology, Inc.). 2008. Final Report For Project
 6739 Entitled Nutrient Loading Rates, Reduction Factors and Implementation Costs Associated
 6740 with BMPs and Technologies, First Revision. Prepared for the South Florida Water
 6741 Management District, West Palm Beach, FL.
- 6742

6743	APPENDIX E – ADJUSTMENTS TO ACCOUNT FOR
6744	REGIONAL PROJECTS
6745	
6746 6747	1. The Annual Load Target and Annual Load Limit will be adjusted for regional projects according to the following equations.
6748	
6749 6750	b. Calculate the area adjustment factor (AAF)
6750 6751 6752	AAF = (total basin area minus area of regional project) / (average area in Base Period)
6752 6753 6754	c. Adjust the Annual Load Target for the regional projects
6755	adjusted Annual Load Target = AAF * Annual Load Target
6756 6757 6758	c. Calculate the adjusted Annual Load Limit using basin-specific equations in Section 3 using the adjusted Annual Load Target calculated above.
6759 6760 6761	2. The annual Runoff Load will be adjusted for regional projects according to the following equations.
6762 6763 6764 6765	a. Calculate the regional project load reduction as the annual load entering the regional project from the watershed less the annual load leaving the regional project and returning to the watershed
6766 6767 6768	regional project load reduction = regional project inflow load – regional project outflow load
6769 6770 6771	a. Calculate the basin's Runoff Load as the load observed at the basin discharge monitoring location(s) minus the pass-through loads
6772 6773	Runoff Load = observed outflow load – pass-through load
6774	b. Adjust the basin's Runoff Load by the regional project load reduction
6775 6776 6777 6778	adjusted Runoff Load = Runoff Load + regional projects load reduction
6779	Example
6780	total basin area = $100,000$ acres

Gary Goforth, Inc. September 2012

6781	area of regional project = $5,000$ acres
6782	average area in Base Period = 100,000 acres
6783	
6784	AAF = (total basin area minus area of regional project) / (average area in Base Period)
6785	
6786	AAF = (100,000 - 5,000) / (100,000) = 0.95
6787	Annual Load Target = 20 mt (from prediction equation)
6788	adjusted Annual Load Target = $0.95 * 20.0 \text{ mt} = 19.0 \text{ mt}$
6789	Annual Load Limit = adjusted Annual Load Target + 1.43976 SE (from prediction equation)
6790	Annual Load Limit = 19.0 mt + 1.43976 (3.5) = 24.0 mt
6791	
6792	regional project inflow load = 8.5 mt
6793	regional project outflow load = 3.5 mt
6794	regional project load reduction = regional project inflow load - regional project outflow load
6795	regional project load reduction = $8.5 \text{ mt} - 3.5 \text{ mt} = 5 \text{ mt}$
6796	
6797	adjusted Runoff Load = Runoff Load + regional projects load reduction
6798	Runoff Load = observed outflow load – pass-through load
6799	observed load at basin outlet structures = 16.0 mt
6800	pass-through load = 2.5 mt
6801	
6802	Therefore,
6803	adjusted Runoff Load = $16.0 \text{ mt} - 2.5 \text{ mt} + 5 \text{ mt} = 18.5 \text{ mt}$
6804	
6805	

6806	ATTACHMENT 1 – Associated Excel Spreadsheets
6807 6808	The following Excel spreadsheets containing the relevant data analyses are attached by
6809	reference to this Draft <i>Technical Support Document</i> .
6810	Torefonee to this Draft Teenmetal Support Document.
6811	Taylor Creek-Nubbin Slough Sub-watershed spreadsheets:
6812	DRAFT PM1 Stats S-133 - 9 15 2012
6813	DRAFT PM2 Stats S-133 - 9 15 2012
6814	MC 26 S-133 - 8 28 2012
6815	SB-S133_LU_95_UnitLoads_BMPs alt method 3a
6816	
6817	DRAFT PM1 Stats S-154 - 9 15 2012
6818	DRAFT PM2 Stats S-154 - 9 15 2012
6819	MC 17 S-154 - 8 28 2012
6820	SB-S154_LU_95_UnitLoads_BMPs alt method 3a
6821	
6822	DRAFT PM1 Stats S-191 - 9 15 2012
6823	DRAFT PM2 Stats S-191 - 9 15 2012
6824	MC 33 S-191 - 8 28 2012
6825	SB-S191_LU_95_UnitLoads_BMPs alt method 3a
6826	
6827	Lower Kissimmee Sub-watershed spreadsheets:
6828	DRAFT PM1 Stats LK - 8 25 2012
6829	DRAFT PM2 Stats LK - 8 25 2012
6830	MC 1 sqrt(L) LK - 8 28 2012
6831	SW-LowerKissimmee_LU_95_UnitLoads_BMPs alt method 4
6832	
6833	

6834	East Lake Okeechobee Sub-watershed spreadsheets:
6835	DRAFT PM1 Stats C-44 - 9 3 2012
6836	DRAFT PM2 Stats C-44 - 8 27 2012
6837	MC 3 C-44 - 8 28 2012
6838	
6839	DRAFT PM1 Stats L8 - 8 25 2012
6840	DRAFT PM2 Stats L8 - 8 25 2012
6841	MC 8 sqrt(L) L-8 - 8 28 2012
6842	SB-L-8_LU_95_UnitLoads_BMPs - WY95-03 alt method 4
6843	
6844	Indian Prairie Sub-watershed spreadsheets:
6845	DRAFT PM1 Stats IP - 8 27 2012
6846	DRAFT PM2 Stats IP - 9 7 2012
6847	MC 6 IP - 9 3 2012
6848	SW-IndianPrairie_LU_95_UnitLoads_BMPs rev1 alt method 4
6849	
6850	Fisheating Creek-Nicodemus Slough Sub-watershed spreadsheets:
6851	DRAFT PM1 Stats FECR-LP - 8 25 2012
6852	DRAFT PM2 Stats FECR-LP - 8 25 2012
6853	MC 16 FECRLP - 8 28 2012
6854	SB-FisheatingCreek_LU_95_UnitLoads_BMPs alt method 3a
6855	
6856	Lake Istokpoga Sub-watershed spreadsheets:
6857	DRAFT PM1 Stats Josephine Cr TP - 12 13 2012
6858	DRAFT PM2 Stats Josephine Cr TP – 12 13 2012
6859	MC 16 Josephine Cr TP – 1 25 2013
6860	DRAFT PM1 Stats Arbuckle Cr TP – 12 13 2012
6861	DRAFT PM2 Stats Arbuckle Cr TP – 12 13 2012
6862	MC 16 Arbuckle Cr TP – 1 25 2013

- 6863 West Lake Okeechobee Sub-watershed spreadsheets:
- 6864 DRAFT PM1 Stats S4IC TP 9 20 2012
- 6865 DRAFT PM2 Stats S4IC TP 10 25 2012
- 6866 MC 14 S4IC 10 30 2012
- 6867 (07-12-12) Revised SB-S-4_LU_95_UnitLoads XP
- 6868
- 6869 DRAFT PM1 Stats EC TP 9 20 2012
- 6870 DRAFT PM2 Stats EC TP 10 25 2012
- 6871 MC 14 EC 8 28 2012
- 6872 (07-12-12) Revised SB-S-4_LU_95_UnitLoads XP
- 6873
- 6874 Upper Kissimmee Sub-watershed spreadsheets:
- 6875 DRAFT PM1 Stats Boggy Cr TP 11 29 2012
- 6876 DRAFT PM2 Stats Boggy Cr TP 12 13 2012
- 6877 MC sqrt14 Boggy Cr TP 1 25 2013
- 6878 DRAFT PM1 Stats Shingle Cr TP 11 26 2012
- 6879 DRAFT PM2 Stats Shingle Cr TP 12 13 2012
- 6880 MC 19 Shingle Cr TP 1 25 2013
- 6881

