10-year Summary of the Performance of the Everglades Stormwater Treatment Areas

February 18, 2005

Gary Goforth, P.E., Ph.D.

Gary Goforth, Inc.

Overview

Everglades Restoration Background
 Everglades Construction Project
 Stormwater Treatment Area Performance

The Historic Everglades Ecosystem "River of Grass"

open water sloughs

ERY STOR

History

- Settlement in south Florida increased in the late 1800's
 - Navigation Improvements
 - Everglades Drainage District
 - Initial drainage works improved development opportunities
 - Severe floods & droughts persisted

The Central and South Florida Project

- Early drainage projects began in late 1880s
- Storms of 1920s and 1940s highlighted deficiencies
- Initially authorized in 1948
- Constructed between 1950's and 1970's

Operated in accordance with USACE criteria

Major Problems Facing Everglades

- Loss of Everglades habitat
- Disruption of hydropatterns (i.e., timing, volume & distribution)
 - Repetitive water shortages and salt water intrusion
 - 1.7 billion gallons of water a day wasted to tide
- Degradation of water quality
- Exotic plant species

Everglades Restoration

Two initiatives:

Everglades Forever Act – primary focus is water quality, with some quantity and distribution features

Comprehensive Everglades Restoration Plan – primary focus is water quantity and distribution, with some water quality features

This presentation will cover the Everglades Forever Act restoration program

Everglades Forever Act

- 1991, amended 1994 and 2003
- Achieve state water quality standards by 12/31/06
- Construction
 - Stormwater Treatment Areas
 - Diversion and hydropattern restoration
- Research
 - Phosphorus criterion research
 - Advanced treatment technology research
- Regulation
 - Best Management Practices (BMPs)

Everglades Construction Project

6 STAs

- Over 40,000 acres of constructed wetlands
- Capture and treat 75% of the water entering the Everglades

Everglades Construction Project -Objectives

- Reduce phosphorus levels, in conjunction with EAA BMPs, to an average of 50 ppb
- Increase supply of water into Everglades
- Improve distribution of inflows to Everglades
- Maintain flood protection for tributary basins; improve flood protection in C-51W basin
- Reduce discharges of freshwater to estuaries
- Reduce local phosphorus loading to Lake Okeechobee

Stormwater Treatment Areas

STAs are constructed wetlands that remove and store nutrients through plant growth and the accumulation of dead plant material in a layer of peat.

Periphyton-based Stormwater Treatment Area (PSTA)

1st Generation Design Model

 $d(QC) / dA = p C_p - S$

Where Q = flow

- C = water column phosphorus concentration
- A = effective treatment area
- p = precipitation
- C_p = atmospheric deposition of phosphorus
- S = sediment accretion rate

S = long-term phosphorus storage mechanism in the STAs

Simplifying Assumptions

- Apparent background TP conc = atmospheric deposition TP conc
- Sediment accretion rate, assumed to be represented by first-order equation:

 $\blacksquare S = K_e F_w C$

K_e = effective settling rate

• F_w = wet period faction (%)

- Effective settling rate (K_e) is constant and independent of hydraulic and nutrient loading rates
- Area remains wet all year long (F_w = 100%)
- Plug flow, no hydraulic short circuiting
- Negligible interaction with groundwater
- Used 10-year average annual values

Sizing of the STAs

$$Q\left\{\frac{(NC_{i} + KC_{i} - PC_{p})}{(NC_{o} + KC_{o} - PC_{p})}\right\}^{[1/(1 + K/N)]} - Q$$

$$N$$

Where: $\mathbf{A} = \text{effective treatment area}$

 $\mathbf{Q} = 10$ -yr average annual flow

 $C_i = 10$ -yr average annual inflow phosphorus concentration

 $C_0 = 10$ -yr average annual outflow phosphorus concentration (50 ppb)

K = effective settling rate (**10.2 m/yr**)

 $\mathbf{P} = 10$ -yr average annual rainfall (1.233m/yr)

N = 10-yr average annual (rainfall - evapotranspiration) (0.083m/yr)

 $C_p = 10$ -yr ave annual atmospheric deposition of phosphorus (50 ppb)

Summary of STA Sizes

STA	Flow	Load	Size	Removal
	AF/yr	MT/yr	acres	MT/yr
STA 1E	125,000	29	5,350	23
STA 1W	143,000	38	6,670	31
STA 2	175,000	34	6,430	25
STA-3/4	600,000	87	16,480	53
STA 5	78,000	25	4,118	21
STA 6	54,000	13	2,280	10

STA-1W Phosphorus Concentrations

STA-1W Phosphorus Loads

6,430 acres of effective treatment area

 Parallel flow-ways: emergent followed by SAV

STA-2 Phosphorus Concentrations

STA-2 Phosphorus Loads □ Inflow TP 45,000 Total Phosphorus Load Outflow TP 40,000 35,000 30,000 (kg) 25,000 20,000 15,000 10,000 5,000 2002 2003 2004 2005 (through 12/04)

Gary Goforth, Inc.

Stormwater Treatment Area 3/4 is the world's largest constructed wetland! Over 16,500 acres of former agricultural land has been converted to a biological treatment system designed to remove over 55 tons per year of phosphorus from water entering the Everglades.

STA-3/4

- 16,530 acres of effective treatment area
- Lessons learned from other STAs applied to design and construction
- Parallel flow-ways: emergent vegetation

STA-3/4 Phosphorus Concentrations

STA-3/4 Phosphorus Loads

STA-5

•4,118 acres of effective treatment area
• Parallel flow-ways:

emergent and the emergent followed by SAV

STA-6

 870 acres of effective treatment area

 Parallel flow-ways: emergent and emergent with periphyton

STA-6 Phosphorus Concentrations

STA-6 Phosphorus Loads

Corps of Engineers constructed STA-1E

Performance

General operating principles

- 1. Try to ensure inflows (flows and TP loads) are within the design envelope
- 2. Avoid dry out minimum of 15 cm depth
- 3. Avoid too deep for too long maximum 137 cm depth for 10 days
- 4. Maintain target depths between storm events:
 - Emergent: 38 cm
 - **SAV: 45 cm**
- **5.** Frequent field observations by site managers
- 6. Adaptive management for performance optimization

STA Outflow Concentrations

Water Year

Water Year

STA Performance Synopsis – 9/04

Glancing blows from Hurricanes Frances, Ivan and Jeanne

- In general, STAs performed well
 - Inflow: 411,000 acre feet & 95 tons of phosphorus
 - 30% of annual flows; 60% of annual loads
 - 65 m tons removed (68%); average outflow = 54 ppb

STA-1W

- Inflow: 70% of annual flows; 150% of annual loads
- 20 m tons removed; average outflow = 127 ppb
- Recovery Plan being implemented
 - Divert flows to other STAs
 - Restricting inflow to 5% of maximum diversion to Refuge
 - Additional monitoring and assessment
 - Additional vegetation and wq monitoring

Summary of Performance

- STA-1W (8/1994 12/2004)
 - 296 m tons removed; average outflow = 47 ppb
- STA-2 (6/1999 12/2004)
 - 84 m tons removed; average outflow = 17 ppb
- STA-3/4 (10/2003 12/2004)
 - 51 tons removed; average outflow = 12 ppb
- STA-5 (1/1999 12/2004)
 - 122 m tons removed; average outflow = 101 ppb
- STA-6 (12/97– 12/2004)
 - 28 m tons removed; average outflow = 19 ppb

Summary

Performance has exceeded expectations

- More than 580 metric tons of phosphorus removed
- Discharges have averaged 41 ppb
- Continuing a strong science-based program of research to optimize performance
- Removal influenced by nutrient loading rate, inflow concentrations, soils, vegetation and hydraulic loading rate, depth
- STA enhancements underway to achieve new phosphorus criterion of 10 ppb in the Everglades

Phosphorus Reduction Due to BMPs and STAs oad without BMPs & STAs Load with BMPs & STAs Phosphorus Reduction (tons/yr) Cumulative Reduction Cumulative Reduction (tons)

Despite success of EAA BMPs and STAs, need additional water quality improvement measures to achieve compliance with phosphorus standard by Dec. 31, 2006

Long-Term Water Quality Solutions

- Expansion of BMPs (esp. urban basins)
- Expansion of STAs
- Enhancement of STAs
 - Continue strong science-based program to optimize performance
- Synchronization with CERP projects
- ADAPTIVE MANAGEMENT

For More Information:

www.sfwmd.gov

- Everglades Restoration
- Everglades Construction Project
- Long-Term Water Plan
- Everglades Consolidated Report
 - Summary of all available data
 - http://www.sfwmd.gov/org/ema/everglades/index.html
- Gary Goforth (772) 223-8593
 - gary@garygoforth.net
 - www.garygoforth.net

